
CakePHP 1.2.X: The Manual

Generated by Seh Hui "Felix" Leong (http://felixleong.com/)

Welcome to the Cookbook, the CakePHP documentation. The Cookbook is a wiki�like system
allowing contributions from the public. With an open system, we hope to maintain a high level
of quality, validity, and accuracy for the CakePHP documentation. The Cookbook also makes it
easy for anybody to contribute.

A huge thank you to AD7six (http://www.ad7six.com/) , who championed the Cookbook by
putting in endless hours developing, testing and improving this application.

How You Can Help

If you notice an error, something that is incomplete, something that hasn't been covered at all,
or something that just isn't worded to your liking, here's how you can help:

1. Click the edit link for the section you want to change.
2. Log in to Cookbook if prompted using yourBakery (http://bakery.cakephp.org/)

account. Anyone can get a bakery account!
3. Please review the guidelines for submitting to the Cookbook (http://
book.cakephp.org/view/482/contributing+to+the+cookbook) to ensure
consistency.

4. Submit additions/edits for review using valid, semantic HTML.
5. Follow the progress of your submissions using the rss feeds or check back in the next

day or so to see your changes approved.

Translations

Email John David Anderson (docs at cakephp dot org) or on IRC (#cakephp on freenode as _
psychic_) to discuss any translation efforts you would like to participate in.

Translator tips:

Browse and edit in the language you want the content to be translated to � otherwise you
won't see what has already been translated.
Feel free to dive right in if your chosen language already exists on the book.
Use the to do list (top right) to see where attention is needed for your language.
Use Informal Form (http://en.wikipedia.org/wiki/Register_%28linguistics%29)
.
Translate both the content and the title at the same time.
Do compare to the English content before submitting a correction (if you correct
something, but don't integrate an 'upstream' change your submission won't be accepted)
.
If you need to write an English term, wrap it in tags. E.g. "asdf asdf Controller
asdf" or "asdf asdf Kontroller (Controller) asfd" as appropriate.
Do not submit partial translations.
Do not edit a section with a pending change.
Do not use html entities (http://en.wikipedia.org/wiki/List_of_XML_and_
HTML_character_entity_references) for accented characters, the book uses UTF�8.
Do not significantly change the markup (HTML) or add new content � If the original
content is missing some info, submit an edit for that first.

We're committed to making the documentation for CakePHP better than it has ever been. We
hope you'll join us by using the Cookbook and giving back to a project that we've all benefited
so much from.

1 Beginning With CakePHP

Welcome to the Cookbook, the manual for the CakePHP web application framework that
makes developing a piece of cake!

This manual assumes that you have a general understanding of PHP and a basic
understanding of object�oriented programming (OOP). Different functionality within the
framework makes use of different technologies – such as SQL, JavaScript, and XML – and this
manual does not attempt to explain those technologies, only how they are used in context.

1.1 What is CakePHP ? Why Use it?

CakePHP (http://www.cakephp.org/) is a free (http://en.wikipedia.org/wiki/MIT_
License) , open+source (http://en.wikipedia.org/wiki/Open_source) , rapid
development (http://en.wikipedia.org/wiki/Rapid_application_development)
framework (http://en.wikipedia.org/wiki/Application_framework) for PHP (http://
www.php.net/) . It’s a foundational structure for programmers to create web applications. Our
primary goal is to enable you to work in a structured and rapid manner–without loss of
flexibility.

CakePHP takes the monotony out of web development. We provide you with all the tools you
need to get started coding what you really need to get done: the logic specific to your
application. Instead of reinventing the wheel every time you sit down to a new project, check
out a copy of CakePHP and get started with the real guts of your application.

CakePHP has an active developer team (https://trac.cakephp.org/wiki/Contributors)
and community, bringing great value to the project. In addition to keeping you from wheel�
reinventing, using CakePHP means your application’s core is well tested and is being
constantly improved.

Here’s a quick list of features you’ll enjoy when using CakePHP:

Active, friendly community (http://cakephp.org/feeds)
Flexible licensing (http://en.wikipedia.org/wiki/MIT_License)
Compatible with versions 4 and 5 of PHP
IntegratedCRUD (http://en.wikipedia.org/wiki/Create%2C_read%2C_update_
and_delete) for database interaction
Application scaffolding (http://en.wikipedia.org/wiki/Scaffold_%
28programming%29)
Code generation
MVC (http://en.wikipedia.org/wiki/Model+view+controller) architecture
Request dispatcher with clean, customURLs and routes
Built�in validation (http://en.wikipedia.org/wiki/Data_validation)
Fast and flexible templating (http://en.wikipedia.org/wiki/Web_template_
system) (PHP syntax, with helpers)
View Helpers for AJAX, JavaScript, HTML Forms andmore
Email, Cookie, Security, Session, and Request Handling Components
FlexibleACL (http://en.wikipedia.org/wiki/Access_control_list)
Data Sanitization
Flexible Caching (http://en.wikipedia.org/wiki/Web_cache)
Localization
Works from any web site directory, with little to no Apache (http://
httpd.apache.org/) configuration involved

1.2 Where to Get Help

The Official CakePHP website

http://www.cakephp.org (http://www.cakephp.org/)

The Official CakePHP website is always a great place to visit. It features links to oft�used
developer tools, screencasts, donation opportunities, and downloads.

The Cookbook

http://book.cakephp.org (http://book.cakephp.org/)

This manual should probably be the first place you go to get answers. As with many other open
source projects, we get new folks regularly. Try your best to answer your questions on your own
first. Answers may come slower, but will remain longer – and you'll also be lightening our
support load. Both the manual and the API have an online component.

The Bakery

http://bakery.cakephp.org (http://bakery.cakephp.org/)

The CakePHP Bakery is a clearing house for all things CakePHP. Check it out for tutorials,
case studies, and code examples. Once you’re acquainted with CakePHP, log on and share your
knowledge with the community and gain instant fame and fortune.

The API

http://api.cakephp.org/ (http://api.cakephp.org/)

Straight to the point and straight from the core developers, the CakePHP API (Application
Programming Interface) is the most comprehensive documentation around for all the nitty
gritty details of the internal workings of the framework. Its a straight forward code reference,
so bring your propeller hat.

CakeForge

http://www.cakeforge.org (http://www.cakeforge.org/)

CakeForge is another developer resource you can use to host your CakePHP projects to share
with others. If you’re looking for (or want to share) a killer component or a praiseworthy
plugin, check out CakeForge.

The Test Cases

http://api.cakephp.org/tests (http://api.cakephp.org/tests)

If you ever feel the information provided in the API is not sufficient, check out the code of the
test cases provided with CakePHP 1.2. They can serve as practical examples for function and
data member usage for a class. To get the core test cases you need to download a nightly
package or do a svn branch checkout. The test cases will be located under

1. cake/tests/cases

The IRC channel

#cakephp @ irc.freenode.net (irc://irc.freenode.net/cakephp)

If you’re stumped, give us a holler in the CakePHP IRC channel. Someone from the
development team is usually there, especially during the daylight hours for North and South
America users. We’d love to hear from you, whether you need some help, want to find users in
your area, or would like to donate your brand new sports car.

The Google Group

http://groups.google.com/group/cake+php (http://groups.google.com/group/cake+
php)

CakePHP also has a very active Google Group. It can be a great resource for finding archived
answers, frequently asked questions, and getting answers to immediate problems.

1.3 Understanding Model ,View ,Controller

CakePHP follows theMVC (http://en.wikipedia.org/wiki/Model+view+controller)
software design pattern. Programming using MVC separates your application into three main
parts:

1. The Model represents the application data
2. The View renders a presentation of model data
3. The Controller handles and routes requests made by the client

Figure: 1: A Basic MVC Request

Figure: 1 shows an example of a bare�bones MVC request in CakePHP. To illustrate, assume a
client named "Ricardo" just clicked on the “Buy A Custom Cake Now!” link on your
application’s home page.

Ricardo clicks the link pointing to http://www.example.com/cakes/buy, and his
browser makes a request to your web server.
The dispatcher checks the request URL (/cakes/buy), and hands the request to the
correct controller.
The controller performs application specific logic. For example, it may check to see if
Ricardo has logged in.
The controller also uses models to gain access to the application’s data. Models usually
represent database tables, but they could also representLDAP (http://

en.wikipedia.org/wiki/Ldap) entries, RSS (http://en.wikipedia.org/wiki/Rss)
feeds, or files on the system. In this example, the controller uses a model to fetch
Ricardo’s last purchases from the database.
Once the controller has worked its magic on the data, it hands it to a view. The view
takes this data and gets it ready for presentation to the client. Views in CakePHP are
usually in HTML format, but a view could just as easily be a PDF, XML document, or
JSON object depending on your needs.
Once the view has used the data from the controller to build a fully rendered view, the
content of that view is returned to Ricardo’s browser.

Almost every request to your application will follow this basic pattern. We'll add some details
later on which are specific to CakePHP, so keep this in mind as we proceed.

1.3.1 Benefits

Why use MVC? Because it is a tried and true software design pattern that turns an application
into a maintainable, modular, rapidly developed package. Crafting application tasks into
separate models, views, and controllers makes your application very light on its feet. New
features are easily added, and new faces on old features are a snap. The modular and separate
design also allows developers and designers to work simultaneously, including the ability to
rapidly prototype (http://en.wikipedia.org/wiki/Software_prototyping) . Separation also
allows developers to make changes in one part of the application without affecting others.

If you've never built an application this way, it takes some time getting used to, but we're
confident that once you've built your first application using CakePHP, you won't want to do it
any other way.

2 Basic Principles of CakePHP

The CakePHP framework provides a robust base for your application. It can handle every
aspect, from the user’s initial request all the way to the final rendering of a web page. And since
the framework follows the principles of MVC, it allows you to easily customize and extendmost
aspects of your application.

The framework also provides a basic organizational structure, from filenames to database table
names, keeping your entire application consistent and logical. This concept is simple but
powerful. Follow the conventions and you’ll always know exactly where things are and how
they’re organized.

2.1 CakePHP Structure

CakePHP features Controller, Model, and View classes, but it also features some additional
classes and objects that make development in MVC a little quicker andmore enjoyable.
Components, Behaviors, and Helpers are classes that provide extensibility and reusability to
quickly add functionality to the base MVC classes in your applications. Right now we’ll stay at
a higher level, so look for the details on how to use these tools later on.

2.1.1 Controller Extensions ("Components")

A Component is a class that aids in controller logic. If you have some logic you want to share
between controllers (or applications), a component is usually a good fit. As an example, the
core EmailComponent class makes creating and sending emails a snap. Rather than writing a
controller method in a single controller that performs this logic, you can package the logic so it
can be shared.

Controllers are also fitted with callbacks. These callbacks are available for your use, just in
case you need to insert some logic between CakePHP’s core operations. Callbacks available
include:

beforeFilter(), executed before any controller action logic
beforeRender(), executed after controller logic, but before the view is rendered
afterFilter(), executed after all controller logic, including the view render. There
may be no difference between afterRender() and afterFilter() unless you’ve
manually made a call to render() in your controller action and have included some
logic after that call.

2.1.2 View Extensions ("Helpers")

A Helper is a class that aids in view logic. Much like a component used among controllers,
helpers allow presentational logic to be accessed and shared between views. One of the core
helpers, AjaxHelper, makes Ajax requests within views much easier.

Most applications have pieces of view code that are used repeatedly. CakePHP facilitates view
code reuse with layouts and elements. By default, every view rendered by a controller is placed
inside a layout. Elements are used when small snippets of content need to be reused in multiple
views.

2.1.3 Model Extensions ("Behaviors")

Similarly, Behaviors work as ways to add common functionality between models. For example,
if you store user data in a tree structure, you can specify your User model as behaving like a tree,
and gain free functionality for removing, adding, and shifting nodes in your underlying tree
structure.

Models also are supported by another class called a DataSource. DataSources are an
abstraction that enable models to manipulate different types of data consistently. While the
main source of data in a CakePHP application is often a database, youmight write additional
DataSources that allow your models to represent RSS feeds, CSV files, LDAP entries, or iCal
events. DataSources allow you to associate records from different sources: rather than being
limited to SQL joins, DataSources allow you to tell your LDAP model that it is associated to
many iCal events.

Just like controllers, models are featured with callbacks as well:

beforeFind()
afterFind()
beforeValidate()
beforeSave()
afterSave()
beforeDelete()
afterDelete()

The names of these methods should be descriptive enough to let you know what they do. You
can find the details in the models chapter.

2.1.4 Application Extensions

Controllers, helpers andmodels each have a parent class you can use to define application�
wide changes. AppController (located at /app/app_controller.php), AppHelper (located at /
app/app_helper.php) and AppModel (located at /app/app_model.php) are great places to put
methods you want to share between all controllers, helpers or models.

Although they aren’t classes or files, routes play a role in requests made to CakePHP. Route
definitions tell CakePHP how to map URLs to controller actions. The default behavior assumes
that the URL “/controller/action/var1/var2” maps to Controller::action($var1, $var2), but you
can use routes to customize URLs and how they are interpreted by your application.

Some features in an application merit packaging as a whole. A plugin is a package of models,
controllers and views that accomplishes a specific purpose that can span multiple applications.
A user management system or a simplified blog might be a good fit for CakePHP plugins.

2.2 A Typical CakePHP Request

We’ve covered the basic ingredients in CakePHP, so let’s look at how objects work together to
complete a basic request. Continuing with our original request example, let’s imagine that our
friend Ricardo just clicked on the “Buy A Custom Cake Now!” link on a CakePHP application’s
landing page.

Figure: 2. Typical Cake Request.

Black = required element, Gray = optional element, Blue = callback

1. Ricardo clicks the link pointing to http://www.example.com/cakes/buy, and his
browser makes a request to your web server.

2. The Router parses the URL in order to extract the parameters for this request: the
controller, action, and any other arguments that will affect the business logic during
this request.

3. Using routes, a request URL is mapped to a controller action (a method in a specific
controller class). In this case, it’s the buy() method of the CakesController. The
controller’s beforeFilter() callback is called before any controller action logic is
executed.

4. The controller may use models to gain access to the application’s data. In this example,
the controller uses a model to fetch Ricardo’s last purchases from the database. Any
applicable model callbacks, behaviors, and DataSources may apply during this
operation. While model usage is not required, all CakePHP controllers initially require
at least one model.

5. After the model has retrieved the data, it is returned to the controller. Model callbacks
may apply.

6. The controller may use components to further refine the data or perform other
operations (session manipulation, authentication, or sending emails, for example).

7. Once the controller has usedmodels and components to prepare the data sufficiently,
that data is handed to the view using the controller’s set() method. Controller callbacks
may be applied before the data is sent. The view logic is performed, which may include
the use of elements and/or helpers. By default, the view is rendered inside of a layout.

8. Additional controller callbacks (like afterFilter) may be applied. The complete, rendered
view code is sent to Ricardo’s browser.

2.3 CakePHP Folder Structure

After you've downloaded and extracted CakePHP, these are the files and folders you should see:

app

cake
vendors
.htaccess
index.php
README

You'll notice three main folders:

The app folder will be where you work your magic: it’s where your application’s files
will be placed.
The cake folder is where we’ve worked our magic. Make a personal commitmentnot to
edit files in this folder. We can’t help you if you’ve modified the core.
Finally, the vendors folder is where you’ll place third�party PHP libraries you need to
use with your CakePHP applications.

2.3.1 The App Folder

CakePHP’s app folder is where you will do most of your application development. Let’s look a
little closer at the folders inside of app.

config Holds the (few) configuration files CakePHP uses. Database connection details,
bootstrapping, core configuration files andmore should be stored here.

controllers Contains your application’s controllers and their components.

locale Stores string files for internationalization.

models Contains your application’s models, behaviors, and datasources.

plugins Contains plugin packages.

tmp
This is where CakePHP stores temporary data. The actual data it stores depends
on how you have CakePHP configured, but this folder is usually used to store
model descriptions, logs, and sometimes session information.

vendors

Any third�party classes or libraries should be placed here. Doing so makes them
easy to access using the App::import('vendor', 'name') function. Keen observers
will note that this seems redundant, as there is also a vendors folder at the top
level of our directory structure. We'll get into the differences between the two
when we discuss managing multiple applications andmore complex system
setups.

views Presentational files are placed here: elements, error pages, helpers, layouts, and
view files.

webroot
In a production setup, this folder should serve as the document root for your
application. Folders here also serve as holding places for CSS stylesheets,
images, and JavaScript files.

2.4 CakePHP Conventions

We are big fans of convention over configuration. While it takes a bit of time to learn
CakePHP’s conventions, you save time in the long run: by following convention, you get free
functionality, and you free yourself from the maintenance nightmare of tracking config files.
Convention also makes for a very uniform system development, allowing other developers to
jump in and help more easily.

CakePHP’s conventions have been distilled out of years of web development experience and
best practices. While we suggest you use these conventions while developing with CakePHP,
we should mention that many of these tenets are easily overridden – something that is
especially handy when working with legacy systems.

2.4.1 File and Classname Conventions

In general, filenames are underscored while classnames are CamelCased. So if you have a class
MyNiftyClass, then in Cake, the file should be named my_nifty_class.php. Below are
examples of how to name the file for each of the different types of classes you would typically
use in a CakePHP application:

The Controller class KissesAndHugsController would be found in a file named
kisses_and_hugs_controller.php (notice _controller in the filename)
The Component classMyHandyComponent would be found in a file named my_
handy.php
The Model class OptionValuewould be found in a file named option_value.php
The Behavior class EspeciallyFunkableBehavior would be found in a file named
especially_funkable.php
The View class SuperSimpleView would be found in a file named super_
simple.php
The Helper class BestEverHelper would be found in a file named best_ever.php

Each file would be located in or under (can be in a subfolder) the appropriate folder in your app
folder.

2.4.2 Model and Database Conventions

Model classnames are singular and CamelCased. Person, BigPerson, and ReallyBigPerson are
all examples of conventional model names.

Table names corresponding to CakePHP models are plural and underscored. The underlying
tables for the above mentionedmodels would be people, big_people, and really_big_people,
respectively.

Field names with two or more words are underscored like, first_name.

Foreign keys in hasMany, belongsTo or hasOne relationships are recognized by default as the
(singular) name of the related model followed by _id. So if a baker hasMany cakes, the cakes
table will refer to the baker in the bakers table via a baker_id foreign key.

Join tables, used in hasAndBelongsToMany (HABTM) relationships between models should
be named after the model tables they will join in alphabetical order (apples_zebras rather than
zebras_apples).

All tables with which CakePHP models interact (with the exception of join tables), require a
singular primary key to uniquely identify each row. If you wish to model a table which does not
have a single�field primary key, such as the rows of your posts_tags join table, CakePHP's
convention is that a single�field primary key is added to the table.

CakePHP does not support composite primary keys. If you want to directly manipulate your join
table data, use direct query (http://book.cakephp.org/view/456/query) calls or add a
primary key to act on it as a normal model. E.g.:

CREATE TABLE posts_tags (
id INT(10) NOT NULL AUTO_INCREMENT,
post_id INT(10) NOT NULL,
tag_id INT(10) NOT NULL,
PRIMARY KEY(id));

1. <?php
2. class NewsController extends AppController {
3. function latest() {
4. $this4>_findNewArticles();
5. }
6.
7. function _findNewArticles() {
8. //Logic to find latest news articles
9. }
10. }
11. ?>

2.4.3 Controller Conventions

Controller classnames are plural, CamelCased, and end in Controller.
PeopleController and LatestArticlesController are both examples of
conventional controller names.

The first method you write for a controller might be the index()method. When a request
specifies a controller but not an action, the default CakePHP behavior is to execute the index
()method of that controller. For example, a request for http://www.example.com/apples/
maps to a call on the index()method of the ApplesController, whereas http://
www.example.com/apples/view/ maps to a call on the view()method of the
ApplesController.

You can also change the visibility of controller methods in CakePHP by prefixing controller
method names with underscores. If a controller method has been prefixed with an underscore,
the method will not be accessible directly from the web but is available for internal use. For
example:

While the page http://www.example.com/news/latest/ would be accessible to the user as
usual, someone trying to get to the page http://www.example.com/news/_findNewArticles/
would get an error, because the method is preceded with an underscore.

2.4.3.1 URL Considerations for Controller Names

As you've just seen, single word controllers map easily to a simple lower case URL path. For
example, ApplesController (which would be defined in the file name 'apples_
controller.php') is accessed from http://example.com/apples.

Multiple word controllers can be any 'inflected' form which equals the controller name so:

/redApples
/RedApples
/Red_apples
/red_apples

will all resolve to the index of the RedApples controller. However, the convention is that your
urls are lowercase and underscored, therefore /red_apples/go_pick is the correct form to
access the RedApplesController::go_pick action.

For more information on CakePHP URLs and parameter handling, seeRoutes
Configuration (http://book.cakephp.org/view/46/Routes+Configuration) .

2.4.4 View Conventions

View template files are named after the controller functions they display, in an underscored
form. The getReady() function of the PeopleController class will look for a view template in /
app/views/people/get_ready.ctp.

The basic pattern is /app/views/controller/underscored_function_name.ctp.

By naming the pieces of your application using CakePHP conventions, you gain functionality
without the hassle andmaintenance tethers of configuration. Here’s a final example that ties
the conventions

Database table: "people"
Model class: "Person", found at /app/models/person.php
Controller class: "PeopleController", found at /app/controllers/people_controller.php
View template, found at /app/views/people/index.ctp

Using these conventions, CakePHP knows that a request to http://example.com/people/ maps
to a call on the index() function of the PeopleController, where the Person model is
automatically available (and automatically tied to the ‘people’ table in the database), and
renders to a file. None of these relationships have been configured by any means other than by
creating classes and files that you’d need to create anyway.

Now that you've been introduced to CakePHP's fundamentals, youmight try a run through the
CakePHP Blog Tutorial (http://book.cakephp.org/view/219/blog) to see how things fit
together.

3 Developing with CakePHP

Now you’re cooking.

3.1 Requirements

HTTP Server. Apache with mod_rewrite is preferred, but by no means required.
PHP 4.3.2 or greater. Yes, CakePHP works great on PHP 4 and 5.

Technically a database engine isn’t required, but we imagine that most applications will utilize
one. CakePHP supports a variety of database storage engines:

MySQL (4 or greater)
PostgreSQL
Firebird DB2
Microsoft SQL Server
Oracle
SQLite
ODBC
ADOdb

3.2 Installation Preparation

CakePHP is fast and easy to install. The minimum requirements are a webserver and a copy of
Cake, that's it! While this manual focuses primarily on setting up with Apache (because it's the
most common), you can configure Cake to run on a variety of web servers such as LightHTTPD
or Microsoft IIS.

Installation preparation consists of the following steps:

Downloading a copy of CakePHP
Configuring your web server to handle php if necessary
Checking file permissions

3.2.1 Getting CakePHP

There are two main ways to get a fresh copy of CakePHP. You can either download an archive
copy (zip/tar.gz/tar.bz2) from the main website, or check out the code from the SVN repository.

To download the latest major release of CakePHP. Visit the main website http://
www.cakephp.org (http://www.cakephp.org/) and follow the "Download Now" link.

All current releases of CakePHP are hosted at CakeForge, the home of CakePHP. This site also
contains links to many other CakePHP projects, including plugins and applications for
CakePHP. The CakePHP releases are available athttp://cakeforge.org/projects/
cakephp (http://cakeforge.org/projects/cakephp) .

Alternatively nightly builds are produced which include bug�fixes and up to the minute(well, to
the day) enhancements. These can be accessed from the download index here: http://
cakephp.org/downloads/index/nightly (http://cakephp.org/downloads/index/
nightly) . For true up to the minute updates, you can check out directly from the development

branch of the svn repository here: https://svn.cakephp.org/repo/branches/1.2.x.x
(https://svn.cakephp.org/repo/branches/1.2.x.x) .

3.2.2 Permissions

CakePHP uses the /app/tmp directory for a number of different operations. Model
descriptions, cached views, and session information are just a few examples.

As such, make sure the /app/tmp directory in your cake installation is writable by the web
server user.

3.3 Installation

Installing CakePHP can be as simple as slapping it in your web server’s document root, or as
complex and flexible as you wish. This section will cover the three main installation types for
CakePHP: development, production, and advanced.

Development: easy to get going, URLs for the application include the CakePHP
installation directory name, and less secure.
Production: Requires the ability to configure the web server’s document root, clean
URLs, very secure.
Advanced: With some configuration, allows you to place key CakePHP directories in
different parts of the filesystem, possibly sharing a single CakePHP core library folder
amongst many CakePHP applications.

3.3.1 Development

A development installation is the fastest method to setup Cake. This example will help you
install a CakePHP application andmake it available at http://www.example.com/cake_
1_2/. We assume for the purposes of this example that your document root is set to /var/
www/html.

Unpack the contents of the Cake archive into /var/www/html. You now have a folder in your
document root named after the release you've downloaded (e.g. cake_1.2.0.7962). Rename
this folder to cake_1_2. Your development setup will look like this on the file system:

/var/www/html
/cake_1_2

/app
/cake
/vendors
/.htaccess
/index.php
/README

If your web server is configured correctly, you should now find your Cake application accessible
at http://www.example.com/cake_1_2/.

3.3.2 Production

A production installation is a more flexible way to setup Cake. Using this method allows an
entire domain to act as a single CakePHP application. This example will help you install Cake
anywhere on your filesystem andmake it available at http://www.example.com. Note that

this installation may require the rights to change the DocumentRoot on an Apache
webservers.

Unpack the contents of the Cake archive into a directory of your choosing. For the purposes of
this example, we assume you choose to install Cake into /cake_install. Your production
setup will look like this on the filesystem:

/cake_install/
/app

/webroot (this directory is set as the DocumentRoot directive)
/cake
/vendors
/.htaccess
/index.php
/README

Developers using Apache should set the DocumentRoot directive for the domain to:

DocumentRoot /cake_install/app/webroot

If your web server is configured correctly, you should now find your Cake application accessible
at http://www.example.com.

3.3.3 Advanced Installation

There may be some situations where you wish to place CakePHP's directories on different
places on the filesystem. This may be due to a shared host restriction, or maybe you just want a
few of your apps to share the same Cake libraries. This section describes how to spread your
CakePHP directories across a filesystem.

First, realize that there are three main parts to a Cake application:

1. The core CakePHP libraries, in /cake.
2. Your application code, in /app.
3. The application’s webroot, usually in /app/webroot.

Each of these directories can be located anywhere on your file system, with the exception of the
webroot, which needs to be accessible by your web server. You can even move the webroot
folder out of the app folder as long as you tell Cake where you've put it.

To configure your Cake installation, you'll need to make some changes to /app/webroot/
index.php. There are three constants that you'll need to edit: ROOT, APP_DIR, and CAKE_
CORE_INCLUDE_PATH.

ROOT should be set to the path of the directory that contains your app folder.
APP_DIR should be set to the (base)name of your app folder.
CAKE_CORE_INCLUDE_PATH should be set to the path of your CakePHP libraries
folder.

Let’s run through an example so you can see what an advanced installation might look like in
practice. Imagine that I wanted to set up CakePHP to work as follows:

The CakePHP core libraries will be placed in /usr/lib/cake.
My application’s webroot directory will be /var/www/mysite/.

1. // /app/webroot/index.php (partial, comments removed)
2. if (!defined('ROOT')) {
3. define('ROOT', DS.'home'.DS.'me');
4. }
5. if (!defined('APP_DIR')) {
6. define ('APP_DIR', 'mysite');
7. }
8. if (!defined('CAKE_CORE_INCLUDE_PATH')) {
9. define('CAKE_CORE_INCLUDE_PATH', DS.'usr'.DS.'lib');
10. }

1. $viewPaths = array();
2. $controllerPaths = array();
3. $modelPaths = array();
4. $helperPaths = array();
5. $componentPaths = array();
6. $behaviorPaths = array();
7. $pluginPaths = array();
8. $vendorPaths = array();
9. $localePaths = array();
10. $shellPaths = array();

My application’s app directory will be stored in /home/me/mysite.

Given this type of setup, I would need to edit my webroot/index.php file (which will end up
at /var/www/mysite/index.php, in this example) to look like the following:

It is recommended to use the DS constant rather than slashes to delimit file paths. This
prevents any missing file errors youmight get as a result of using the wrong delimiter, and it
makes your code more portable.

3.3.3.1 Additional Class Paths

It’s occasionally useful to be able to share MVC classes between applications on the same
system. If you want the same controller in both applications, you can use CakePHP’s
bootstrap.php to bring these additional classes into view.

In bootstrap.php, define some specially�named variables to make CakePHP aware of other
places to look for MVC classes:

Each of these special variables can be set to an array of absolute filesystem paths where extra
classes can be found when requested. Make sure that each path specified includes a trailing
slash.

3.3.4 Apache and mod_rewrite (and .htaccess)

While CakePHP is built to work with mod_rewrite out of the box–and usually does–we've
noticed that a few users struggle with getting everything to play nicely on their systems.

Here are a few things youmight try to get it running correctly. First look at your httpd.conf
(Make sure you are editing the system httpd.conf rather than a user� or site�specific httpd.conf)
.

1. Make sure that an .htaccess override is allowed and that AllowOverride is set to All for
the correct DocumentRoot. You should see a something similar to:

1. #
2. # Each directory to which Apache has access can be configured with
respect
3. # to which services and features are allowed and/or disabled in
that
4. # directory (and its subdirectories).
5. #
6. # First, we configure the "default" to be a very restrictive set
of
7. # features.
8. #
9. <Directory />
10. Options FollowSymLinks
11. AllowOverride All
12. # Order deny,allow
13. # Deny from all
14. </Directory>

1. LoadModule rewrite_module libexec/apache2/mod_rewrite.so

1. <IfModule mod_rewrite.c>
2. RewriteEngine on
3. RewriteRule ^$ app/webroot/ [L]
4. RewriteRule (.*) app/webroot/$1 [L]
5. </IfModule>

1. <IfModule mod_rewrite.c>
2. RewriteEngine on
3. RewriteRule ^$ webroot/ [L]
4. RewriteRule (.*) webroot/$1 [L]
5. </IfModule>

2. Make sure you are loading upmod_rewrite correctly. You should see something like:

In many systems these will be commented out (by being prepended with a #) by default,
so youmay just need to remove those leading # symbols.

After youmake changes, restart Apache to make sure the settings are active.

Verify that you your .htaccess files are actually in the right directories.

This can happen during copying because some operating systems treat files that start
with '.' as hidden and therefore won't see them to copy.

3. Make sure your copy of CakePHP is from the downloads section of the site or our SVN
repository, and has been unpacked correctly by checking for .htaccess files.

Cake root directory (needs to be copied to your document, this redirects everything to
your Cake app):

Cake app directory (will be copied to the top directory of your application by bake):

Cake webroot directory (will be copied to your application's web root by bake):

1. <IfModule mod_rewrite.c>
2. RewriteEngine On
3. RewriteCond %{REQUEST_FILENAME} !4d
4. RewriteCond %{REQUEST_FILENAME} !4f
5. RewriteRule ^(.*)$ index.php?url=$1 [QSA,L]
6. </IfModule>

1. <IfModule mod_rewrite.c>
2. RewriteEngine On
3. RewriteBase /
4. RewriteCond %{REQUEST_FILENAME} !4d
5. RewriteCond %{REQUEST_FILENAME} !4f
6. RewriteRule ^(.*)$ index.php?url=$1 [QSA,L]
7. </IfModule>

For many hosting services (GoDaddy, 1and1), your web server is actually being served
from a user directory that already uses mod_rewrite. If you are installing CakePHP into
a user directory (http://example.com/~username/cakephp/), or any other URL
structure that already utilizes mod_rewrite, you'll need to add RewriteBase statements to
the .htaccess files CakePHP uses (/.htaccess, /app/.htaccess, /app/webroot/.htaccess).

This can be added to the same section with the RewriteEngine directive, so for example
your webroot .htaccess file would look like:

The details of those changes will depend on your setup, and can include additional
things that are not Cake related. Please refer to Apache's online documentation for more
information.

3.3.5 Lighttpd and mod_magnet

While lighttpd features a rewrite module, it is not an equivalent of Apache's mod_rewrite. Full
mod_rewrite functionalities are spread amongst Lighttpd's mod_rewrite, mod_magnet and
mod_proxy.

CakePHP, however, mostly needs mod_magnet to redirect requests in order to work with pretty
URLs.

To use pretty URLs with CakePHP and Lighttp, place this lua script in /etc/lighttpd/cake.

1. 44 little helper function
2. function file_exists(path)
3. local attr = lighty.stat(path)
4. if (attr) then
5. return true
6. else
7. return false
8. end
9. end
10. function removePrefix(str, prefix)
11. return str:sub(1,#prefix+1) == prefix.."/" and str:sub(#prefix+2)
12. end
13. 44 prefix without the trailing slash
14. local prefix = ''
15. 44 the magic ;)
16. if (not file_exists(lighty.env["physical.path"])) then
17. 44 file still missing. pass it to the fastcgi backend
18. request_uri = removePrefix(lighty.env["uri.path"], prefix)
19. if request_uri then
20. lighty.env["uri.path"] = prefix .. "/index.php"
21. local uriquery = lighty.env["uri.query"] or ""
22. lighty.env["uri.query"] = uriquery .. (uriquery ~= "" and "&" or
"") .. "url=" .. request_uri
23. lighty.env["physical.rel4path"] = lighty.env["uri.path"]
24. lighty.env["request.orig4uri"] = lighty.env["request.uri"]
25. lighty.env["physical.path"] = lighty.env["physical.doc4root"]
.. lighty.env["physical.rel4path"]
26. end
27. end
28. 44 fallthrough will put it back into the lighty request loop
29. 44 that means we get the 304 handling for free. ;)

If you run your CakePHP installation from a subdirectory, youmust set prefix = 'subdirectory_
name' in the above script.

Then tell Lighttpd about your vhost:

$HTTP["host"] =~ "example.com" {
 server.error4handler4404 = "/index.php"

 magnet.attract4physical4path4to = ("/etc/lighttpd/
cake.lua")

 server.document4root = "/var/www/cake41.2/app/webroot/"

 # Think about getting vim tmp files out of the way too
 url.access4deny = (
 "~", ".inc", ".sh", "sql", ".sql", ".tpl.php",
 ".xtmpl", "Entries", "Repository", "Root",
 ".ctp", "empty"
)
}

3.3.6 Fire It Up

1. var $default = array('driver' => 'mysql',
2. 'persistent' => false,
3. 'host' => 'localhost',
4. 'login' => 'cakephpuser',
5. 'password' => 'c4k3roxx!',
6. 'database' => 'my_cakephp_project',
7. 'prefix' => '');

Alright, let's see CakePHP in action. Depending on which setup you used, you should point
your browser to http://example.com/ or http://example.com/cake_install/. At this point,
you'll be presented with CakePHP's default home, and a message that tells you the status of
your current database connection.

Congratulations! You are ready to create your first CakePHP application.

3.4 Configuration

Configuring a CakePHP application is a piece of cake. After you have installed CakePHP,
creating a basic web application requires only that you setup a database configuration.

There are, however, other optional configuration steps you can take in order to take advantage
of CakePHP flexible architecture. You can easily add to the functionality inherited from the
CakePHP core, configure additional/different URL mappings (routes), and define additional/
different inflections.

3.4.1 Database Configuration

CakePHP expects database configuration details to be in a file at app/config/database.php. An
example database configuration file can be found at app/config/database.php.default. A
finished configuration should look something like this.

The $default connection array is used unless another connection is specified by the $
useDbConfig property in a model. For example, if my application has an additional legacy
database in addition to the default one, I could use it in mymodels by creating a new $legacy
database connection array similar to the $default array, and by setting var $useDbConfig =
‘legacy’; in the appropriate models.

Fill out the key/value pairs in the configuration array to best suit your needs.

Key Value

driver The name of the database driver this configuration array is for. Examples: mysql,
postgres, sqlite, pear�drivername, adodb�drivername, mssql, oracle, or odbc.

persistent Whether or not to use a persistent connection to the database.

host The database server’s hostname (or IP address).

login The username for the account.

password The password for the account.

database The name of the database for this connection to use.

prefix
(optional)

The string that prefixes every table name in the database. If your tables don’t
have prefixes, set this to an empty string.

port
(optional)

The TCP port or Unix socket used to connect to the server.

encoding

Indicates the character set to use when sending SQL statements to the server.
This defaults to the database's default encoding for all databases other than DB2.
If you wish to use UTF�8 encoding with mysql/mysqli connections youmust use
'utf8' without the hyphen.

1. <?php Configure::read('debug'); ?>

1. Configure::write('Company.name','Pizza, Inc.');
2. Configure::write('Company.slogan','Pizza for your body and soul');

schema Used in PostgreSQL database setups to specify which schema to use.

The prefix setting is for tables, notmodels. For example, if you create a join table for your
Apple and Flavor models, you name it prefix_apples_flavors (not prefix_apples_prefix_
flavors), and set your prefix setting to 'prefix_'.

At this point, youmight want to take a look at the CakePHP Conventions (http://
book.cakephp.org/view/22/cakephp+conventions) . The correct naming for your tables
(and the addition of some columns) can score you some free functionality and help you avoid
configuration. For example, if you name your database table big_boxes, your model BigBox,
your controller BigBoxesController, everything just works together automatically. By
convention, use underscores, lower case, and plural forms for your database table names � for
example: bakers, pastry_stores, and savory_cakes.

3.4.2 Core Configuration

Application configuration in CakePHP is found in /app/config/core.php. This file is a
collection of Configure class variable definitions and constant definitions that determine how
your application behaves. Before we dive into those particular variables, you’ll need to be
familiar with Configure, CakePHP’s configuration registry class.

3.4.3 The Configuration Class

Despite few things needing to be configured in CakePHP, it’s sometimes useful to have your
own configuration rules for your application. In the past youmay have defined custom
configuration values by defining variable or constants in some files. Doing so forces you to
include that configuration file every time you needed to use those values.

CakePHP’s new Configure class can be used to store and retrieve application or runtime
specific values. Be careful, this class allows you to store anything in it, then use it in any other
part of your code: a sure temptation to break the MVC pattern CakePHP was designed for. The
main goal of Configure class is to keep centralized variables that can be shared between many
objects. Remember to try to live by "convention over configuration" and you wont end up
breaking the MVC structure we’ve set in place.

This class acts as a singleton and its methods can be called from anywhere within your
application, in a static context.

3.4.3.1 Configure Methods

3.4.3.1.1 write

write(string $key, mixed $value)

Use write() to store data in the application’s configuration.

1. Configure::write(
2. 'Company',array('name'=>'Pizza, Inc.','slogan'=>'Pizza for your body
and soul')
3.);

1. Configure::read('Company.name'); //yields: 'Pizza, Inc.'
2. Configure::read('Company.slogan'); //yields: 'Pizza for your body and
soul'
3.
4. Configure::read('Company');
5.
6. //yields:
7. array('name' => 'Pizza, Inc.', 'slogan' => 'Pizza for your body and
soul');

1. Configure::delete('Company.name');

The dot notation used in the $key parameter can be used to organize your configuration
settings into logical groups.

The above example could also be written in a single call:

You can use Configure::write('debug', $int) to switch between debug and
production modes on the fly. This is especially handy for AMF or SOAP interactions where
debugging information can cause parsing problems.

3.4.3.1.2 read

read(string $key = 'debug')

Used to read configuration data from the application. Defaults to CakePHP’s important debug
value. If a key is supplied, the data is returned. Using our examples from write() above, we can
read that data back:

3.4.3.1.3 delete

delete(string $key)

Used to delete information from the application’s configuration.

3.4.3.1.4 load

load(string $path)

Use this method to load configuration information from a specific file.

1. // /app/config/messages.php:
2. <?php
3. $config['Company']['name'] = 'Pizza, Inc.';
4. $config['Company']['slogan'] = 'Pizza for your body and soul';
5. $config['Company']['phone'] = '555455455';
6. ?>
7.
8. <?php
9. Configure::load('messages');
10. Configure::read('Company.name');
11. ?>

Every configure key�value pair is represented in the file with the $config array. Any other
variables in the file will be ignored by the load() function.

3.4.3.1.5 version

version()

Returns the CakePHP version for the current application.

3.4.3.2 CakePHP Core Configuration Variables

The Configure class is used to manage a set of core CakePHP configuration variables. These
variables can be found in app/config/core.php. Below is a description of each variable and
how it affects your CakePHP application.

Configure Variable Description

debug

Changes CakePHP debugging output.

0 = Production mode. No output.
1 = Show errors and warnings.
2 = Show errors, warnings, and SQL.
3 = Show errors, warnings, SQL, and complete controller dump.

App.baseUrl Un�comment this definition if you don’t plan to use Apache’s mod_
rewrite with CakePHP. Don’t forget to remove your .htaccess files too.

Routing.admin
Un�comment this definition if you’d like to take advantage of CakePHP
admin routes. Set this variable to the name of the admin route you’d
like to use. More on this later.

Cache.disable When set to true, caching is disabled site�wide.

Cache.check If set to true, enables view caching. Enabling is still needed in the
controllers, but this variable enables the detection of those settings.

Session.save

Tells CakePHP which session storage mechanism to use.

php = Use the default PHP session storage.
cache = Use the caching engine configured by Cache::config(). Very
useful in conjunction with Memcache (in setups with multiple
application servers) to store both cached data and sessions.
cake = Store session data in /app/tmp
database = store session data in a database table. Make sure to set up
the table using the SQL file located at /app/config/sql/sessions.sql.

Session.table The name of the table (not including any prefix) that stores session
information.

Session.database The name of the database that stores session information.

Session.cookie The name of the cookie used to track sessions.

Session.timeout Base session timeout in seconds. Actual value depends on
Security.level.

Session.start Automatically starts sessions when set to true.

Session.checkAgent When set to false, CakePHP sessions will not check to ensure the user
agent does not change between requests.

Security.level

The level of CakePHP security. The session timeout time defined in
'Session.timeout' is multiplied according to the settings here.

Valid values:
'high' = x 10
'medium' = x 100
'low' = x 300

'high' and 'medium' also enable session.referer_check (http://
www.php.net/manual/en/session.configuration.php#
ini.session.referer+check)

CakePHP session IDs are also regenerated between requests if
'Security.level' is set to 'high'.

Security.salt A random string used in security hashing.

Acl.classname,
Acl.database

Constants used for CakePHP’s Access Control List functionality. See
the Access Control Lists chapter for more information.

Cache configuration is also found in core.php —We’ll be covering that later on, so stay tuned.

The Configure class can be used to read and write core configuration settings on the fly. This
can be especially handy if you want to turn the debug setting on for a limited section of logic in
your application, for instance.

3.4.3.3 Configuration Constants

While most configuration options are handled by Configure, there are a few constants that
CakePHP uses during runtime.

Constant Description

LOG_
ERROR

Error constant. Used for differentiating error logging and debugging. Currently
PHP supports LOG_DEBUG.

3.4.4 The App Class

Loading additional classes has become more streamlined in CakePHP. In previous versions
there were different functions for loading a needed class based on the type of class you wanted
to load. These functions have been deprecated, all class and library loading should be done
through App::import() now. App::import() ensures that a class is only loaded once, that the
appropriate parent class has been loaded, and resolves paths automatically in most cases.

1. App::import('Core', 'Sanitize');

1. <?php
2. // The same as require('controllers/users_controller.php');
3. App::import('Controller', 'Users');
4. // We need to load the class
5. $Users = new UsersController;
6. // If we want the model associations, components, etc to be loaded
7. $Users4>constructClasses();
8. ?>

3.4.4.1 Using App::import()

App::import($type, $name, $parent, $search, $file, $return);

At first glance App::import seems complex, however in most use cases only 2 arguments are
required.

3.4.4.2 Importing Core Libs

Core libraries such as Sanitize, and Xml can be loaded by:

The above would make the Sanitize class available for use.

3.4.4.3 Importing Controllers, Models, Components, Behaviors, and
Helpers

All application related class should also be loaded with App::import(). The following examples
illustrate how to do so.

3.4.4.3.1 Loading Controllers

App::import('Controller', 'MyController');

Calling App::import is equivalent to require'ing the file. It is important to realize that the
class subsequently needs to be initialized.

3.4.4.3.2 Loading Models

App::import('Model', 'MyModel');

3.4.4.3.3 Loading Components

App::import('Component', 'Auth');

1. App::import('Model', 'PluginName.Comment');

1. App::import('Vendor', 'PluginName.flickr/flickr');

1. App::import('Vendor', 'geshi');

1. App::import('Vendor', 'flickr/flickr');

1. App::import('Vendor', 'SomeName', array('file' => 'some.name.php'));

1. App::import('Vendor', 'WellNamed', array('file' =>
'services'.DS.'well.named.php'));

3.4.4.3.4 Loading Behaviors

App::import('Behavior', 'Tree');

3.4.4.3.5 Loading Helpers

App::import('Helper', 'Html');

3.4.4.4 Loading from Plugins

Loading classes in plugins works much the same as loading app and core classes except you
must specify the plugin you are loading from.

To load APP/plugins/plugin_name/vendors/flickr/flickr.php

3.4.4.5 Loading Vendor Files

The vendor() function has been deprecated. Vendor files should now be loaded through
App::import() as well. The syntax and additional arguments are slightly different, as vendor
file structures can differ greatly, and not all vendor files contain classes.

The following examples illustrate how to load vendor files from a number of path structures.
These vendor files could be located in any of the vendor folders.

3.4.4.5.1 Vendor examples

To load vendors/geshi.php

To load vendors/flickr/flickr.php

To load vendors/some.name.php

To load vendors/services/well.named.php

3.4.5 Routes Configuration

Routing is a feature that maps URLs to controller actions. It was added to CakePHP to make
pretty URLs more configurable and flexible. Using Apache’s mod_rewrite is not required for
using routes, but it will make your address bar look much more tidy.

As will be explained later, routes in CakePHP 1.2 have been expanded and are now very
powerful.

3.4.5.1 Default Routing

Before you learn about configuring your own routes, you should know that CakePHP comes
configured with a default set of routes. CakePHP’s default routing will get you pretty far in any
application. You can access an action directly via the URL by putting its name in the request.
You can also pass parameters to your controller actions using the URL.

 URL pattern default routes:
 http://example.com/controller/action/param1/param2/param3

The URL /posts/view maps to the view() action of the PostsController, and /products/view_
clearance maps to the viewClearance() action of the ProductsController. If no action is
specified in the URL, the index() method is assumed.

The default routing setup also allows you to pass parameters to your actions using the URL. A
request for /posts/view/25 would be equivalent to calling view(25) on the PostsController, for
example.

3.4.5.2 Named parameters

New in CakePHP 1.2 is the ability to use named parameters. You can name parameters and
send their values using the URL. A request for /posts/view/title:first+post/category:general
would result in a call to the view() action of the PostsController. In that action, you’d find the
values of the title and category parameters inside $this�>passedArgs[‘title’] and $this�
>passedArgs[‘category’] respectively.

Some summarizing examples for default routes might prove helpful.

URL to controller action mapping using default routes:

URL: /monkeys/jump
Mapping: MonkeysController4>jump();

URL: /products
Mapping: ProductsController4>index();

URL: /tasks/view/45
Mapping: TasksController4>view(45);

URL: /donations/view/recent/2001
Mapping: DonationsController4>view('recent', '2001');

URL: /contents/view/chapter:models/section:associations
Mapping: ContentsController4>view();

1. Router::connect(
2. 'URL',
3. array('paramName' => 'defaultValue'),
4. array('paramName' => 'matchingRegex')
5.)

1. Router::connect(
2. '/pages/*',
3. array('controller' => 'pages', 'action' => 'display')
4.);

1. Router::connect(
2. '/government',
3. array('controller' => 'products', 'action' => 'display', 5)
4.);

$this4>passedArgs['chapter'] = 'models';
$this4>passedArgs['section'] = 'associations';

3.4.5.3 Defining Routes

Defining your own routes allows you to define how your application will respond to a given
URL. Define your own routes in the /app/config/routes.php file using the
Router::connect()method.

The connect()method takes up to three parameters: the URL you wish to match, the default
values for your route elements, and regular expression rules to help the router match elements
in the URL.

The basic format for a route definition is:

The first parameter is used to tell the router what sort of URL you're trying to control. The URL
is a normal slash delimited string, but can also contain a wildcard (*) or route elements
(variable names prefixed with a colon). Using a wildcard tells the router what sorts of URLs
you want to match, and specifying route elements allows you to gather parameters for your
controller actions.

Once you've specified a URL, you use the last two parameters of connect() to tell CakePHP
what to do with a request once it has been matched. The second parameter is an associative
array. The keys of the array should be named after the route elements in the URL, or the default
elements: :controller, :action, and :plugin. The values in the array are the default values for
those keys. Let's look at some basic examples before we start using the third parameter of
connect().

This route is found in the routes.php file distributed with CakePHP (line 40). This route
matches any URL starting with /pages/ and hands it to the display()method of the
PagesController(); The request /pages/products would be mapped to
PagesController4>display('products'), for example.

This second example shows how you can use the second parameter of connect() to define
default parameters. If you built a site that features products for different categories of
customers, youmight consider creating a route. This allows you link to /government rather
than /products/display/5.

1. Router::connect(
2. '/cooks/:action/*', array('controller' => 'users', 'action' =>
'index')
3.);

1. Router::connectNamed(array('type'));
2. Router::connect(
3. '/cooks/:action/*', array('controller' => 'users', 'action' =>
'index')
4.);

1. Router::connect(
2. '/:controller/:id',
3. array('action' => 'view'),
4. array('id' => '[049]+')
5.);

Another common use for the Router is to define an "alias" for a controller. Let's say that instead
of accessing our regular URL at /users/someAction/5, we'd like to be able to access it by /
cooks/someAction/5. The following route easily takes care of that:

This is telling the Router that any url beginning with /cooks/ should be sent to the users
controller.

When generating urls, routes are used too. Using array('controller' => 'users',
'action' => 'someAction', 5) as a url will output /cooks/someAction/5 if the
above route is the first match found

If you are planning to use custom named arguments with your route, you have to make the
router aware of it using the Router::connectNamed function. So if you want the above
route to match urls like /cooks/someAction/type:chef we do:

You can specify your own route elements, doing so gives you the power to define places in the
URL where parameters for controller actions should lie. When a request is made, the values for
these route elements are found in $this�>params of the controller. This is different than named
parameters are handled, so note the difference: named parameters (/controller/action/
name:value) are found in $this�>passedArgs, whereas custom route element data is found in $
this�>params. When you define a custom route element, you also need to specify a regular
expression � this tells CakePHP how to know if the URL is correctly formed or not.

This simple example illustrates how to create a quick way to view models from any controller
by crafting a URL that looks like /controllername/id. The URL provided to connect() specifies
two route elements: :controller and :id. The :controller element is a CakePHP default route
element, so the router knows how to match and identify controller names in URLs. The :id
element is a custom route element, andmust be further clarified by specifying a matching
regular expression in the third parameter of connect(). This tells CakePHP how to recognize
the ID in the URL as opposed to something else, such as an action name.

Once this route has been defined, requesting /apples/5 is the same as requesting /apples/
view/5. Both would call the view() method of the ApplesController. Inside the view() method,
you would need to access the passed ID at $this4>params['id'].

One more example, and you'll be a routing pro.

1. Router::connect(
2. '/:controller/:year/:month/:day',
3. array('action' => 'index', 'day' => null),
4. array(
5. 'year' => '[12][049]{3}',
6. 'month' => '0[149]|1[012]',
7. 'day' => '0[149]|[12][049]|3[01]'
8.)
9.);

1. // some_controller.php
2. function view($articleID = null, $slug = null) {
3. // some code here...
4. }
5. // routes.php
6. Router::connect(
7. // E.g. /blog/34CakePHP_Rocks
8. '/blog/:id4:slug',
9. array('controller' => 'blog', 'action' => 'view'),
10. array(
11. // order matters since this will simply map ":id" to $articleID
in your action
12. 'pass' => array('id', 'slug'),
13. 'id' => '[049]+'
14.)
15.);

This is rather involved, but shows how powerful routes can really become. The URL supplied
has four route elements. The first is familiar to us: it's a default route element that tells
CakePHP to expect a controller name.

Next, we specify some default values. Regardless of the controller, we want the index() action
to be called. We set the day parameter (the fourth element in the URL) to null to flag it as being
optional.

Finally, we specify some regular expressions that will match years, months and days in
numerical form. Note that parenthesis (grouping) are not supported in the regular expressions.
You can still specify alternates, as above, but not grouped with parenthesis.

Once defined, this route will match /articles/2007/02/01, /posts/2004/11/16, and /
products/2001/05 (as defined, the day parameter is optional as it has a default), handing the
requests to the index() actions of their respective controllers, with the date parameters in $this�
>params.

3.4.5.4 Passing parameters to action

Assuming your action was defined like this and you want to access the arguments using $
articleID instead of $this4>params['id'], just add an extra array in the 3rd parameter
of Router::connect().

And now, thanks to the reverse routing capabilities, you can pass in the url array like below
and Cake will know how to form the URL as defined in the routes.

1. // view.ctp
2. // this will return a link to /blog/34CakePHP_Rocks
3. <?php echo $html4>link('CakePHP Rocks', array(
4. 'controller' => 'blog',
5. 'action' => 'view',
6. 'id' => 3,
7. 'slug' => Inflector::slug('CakePHP Rocks')
8.)); ?>

1. Configure::write('Routing.admin', 'admin');

1. Router::connect('/admin', array('controller' => 'pages', 'action' =>
'index', 'admin' => true));

1. Router::connect('/profiles/:controller/:action/*', array('prefix' =>
'profiles', 'profiles' => true));

1. echo $html4>link('Edit your profile', array('profiles' => true,
'controller' => 'users', 'action' => 'edit', 'id' => 5));

3.4.5.5 Prefix Routing

Many applications require an administration section where privileged users can make
changes. This is often done through a special URL such as /admin/users/edit/5. In
CakePHP, admin routing can be enabled from within the core configuration file by setting the
admin path for Routing.admin.

In your controller, any action with an admin_ prefix will be called. Using our users example,
accessing the url /admin/users/edit/5 would call the method admin_edit of our
UsersController passing 5 as the first parameter.

You can map the url /admin to your admin_index action of pages controller using following
route

You can configure the Router to use multiple prefixes too:

Any calls to the profiles section would look for the profiles_ prefix on the method calls. Our
users example would have a URL structure that looks like /profiles/users/edit/5
would call the profiles_editmethod within the UsersController. Also important to
remember, using the HTML helper to build your links will help maintain the prefix calls.
Here's how to build this link using the HTML helper:

You can set upmultiple prefixed routes using this approach to create a flexible URL structure
for your application.

3.4.6 Inflections

Cake's naming conventions can be really nice � you can name your database table big_boxes,
your model BigBox, your controller BigBoxesController, and everything just works together
automatically. The way CakePHP knows how to tie things together is by inflecting the words
between their singular and plural forms.

There are occasions (especially for our non�English speaking friends) where youmay run into
situations where CakePHP's inflector (the class that pluralizes, singularizes, camelCases, and
under_scores) might not work as you'd like. If CakePHP won't recognize your Foci or Fish,

editing the inflections configuration file is where you can tell CakePHP about your special
cases. This file is found in /app/config/inflections.php.

In this file, you will find six variables. Each allows you to fine�tune CakePHP inflection
behavior.

inflections.php
Variable

Description

$pluralRules
This array contains regular expression rules for pluralizing special
cases. The keys of the array are patterns, and the values are
replacements.

$uninflectedPlural An array containing words that do not need to be modified in order to
be plural (mass nouns, etc.).

$irregularPlural
An array containing words and their plurals. The keys of the array
contain the singular form, the values, plural forms. This array should
be used to store words that don’t follow rules defined in $pluralRules.

$singularRules Same as with $pluralRules, only this array holds rules that singularize
words.

$uninflectedSingular Same as with $uninflectedPlural, only this array holds words that have
no singular form. This is set equal to $uninflectedPlural by default.

$irregularSingular Same as with $irregularPlural, only with words in singular form.

3.4.7 Bootstrapping CakePHP

If you have any additional configuration needs, use CakePHP’s bootstrap file, found in /app/
config/bootstrap.php. This file is executed just after CakePHP’s core bootstrapping.

This file is ideal for a number of common bootstrapping tasks:

Defining convenience functions
Registering global constants
Defining additional model, view, and controller paths

Be careful to maintain the MVC software design pattern when you add things to the bootstrap
file: it might be tempting to place formatting functions there in order to use them in your
controllers.

Resist the urge. You’ll be glad you did later on down the line.

Youmight also consider placing things in the AppController class. This class is a parent class
to all of the controllers in your application. AppController is handy place to use controller
callbacks and define methods to be used by all of your controllers.

3.5 Controllers

3.5.1 Introduction

A controller is used to manage the logic for a part of your application. Most commonly,
controllers are used to manage the logic for a single model. For example, if you were building a
site for an online bakery, youmight have a RecipesController and a IngredientsController
managing your recipes and their ingredients. In CakePHP, controllers are named after the
model they handle, in plural form.

1. <?php
2.
3. # /app/controllers/recipes_controller.php
4. class RecipesController extends AppController {
5. function view($id) {
6. //action logic goes here..
7. }
8. function share($customer_id, $recipe_id) {
9. //action logic goes here..
10. }
11. function search($query) {
12. //action logic goes here..
13. }
14. }
15. ?>

1. <?php
2. class AppController extends Controller {
3. }
4. ?>

The Recipe model is handled by the RecipesController, the Product model is handled by the
ProductsController, and so on.

Your application's controllers are classes that extend the CakePHP AppController class, which
in turn extends a core Controller class. The AppController class can be defined in /app/app_
controller.php and it should contain methods that are shared between all of your
application’s controllers. It extends the Controller class which is a standard CakePHP library.

Controllers can include any number of methods which are usually referred to as actions.
Actions are controller methods used to display views. An action is a single method of a
controller.

CakePHP’s dispatcher calls actions when an incoming request matches a URL to a controller’s
action (refer to "Routes Configuration" (http://book.cakephp.org/view/46/Routes+
Configuration) for an explanation on how controller actions and parameters are mapped from
the URL).

Returning to our online bakery example, our RecipesController might contain the view(),
share(), and search() actions. The controller would be found in /app/controllers/
recipes_controller.php and contain:

In order for you to use a controller effectively in your own application, we’ll cover some of the
core attributes andmethods provided by CakePHP’s controllers.

3.5.2 The App Controller

As stated in the introduction, the AppController class is the parent class to all of your
application's controllers. AppController itself extends the Controller class included in the
CakePHP core library. As such, AppController is defined in /app/app_controller.php
like so:

Controller attributes andmethods created in your AppController will be available to all of your
application's controllers. It is the ideal place to create code that is common to all of your
controllers. Components (which you'll learn about later) are best used for code that is used in
many (but not necessarily all) controllers.

1. function beforeFilter(){
2. parent::beforeFilter();
3. }

1. <?php
2. # $name controller attribute usage example
3. class RecipesController extends AppController {
4. var $name = 'Recipes';
5. }
6. ?>

While normal object�oriented inheritance rules apply, CakePHP also does a bit of extra work
when it comes to special controller attributes, like the list of components or helpers used by a
controller. In these cases, AppController value arrays are merged with child controller class
arrays.

CakePHP merges the following variables from the AppController to your application's
controllers:

$components
$helpers
$uses

Please also remember to call AppController's callbacks within child controller callbacks for
best results:

3.5.3 Controller Attributes

For a complete list of controller attributes and their descriptions visit the CakePHP API. Check
outhttp://api.cakephp.org/class/controller (http://api.cakephp.org/class/
controller) .

3.5.3.1 $name

PHP4 users should start out their controller definitions using the $name attribute. The $name
attribute should be set to the name of the controller. Usually this is just the plural form of the
primary model the controller uses. This takes care of some PHP4 classname oddities and helps
CakePHP resolve naming.

3.5.3.2 $components, $helpers and $uses

The next most often used controller attributes tell CakePHP what helpers, components, and
models you’ll be using in conjunction with the current controller. Using these attributes make
these MVC classes available to the controller as a class variable ($this4>ModelName, for
example).

Each controller has some of these classes available by default, so youmay not need to
configure your controller at all.

Controllers have access to their primary model available by default. Our RecipesController will
have the Recipe model class available at $this4>Recipe, and our ProductsController also
features the Product model at $this4>Product. However, when allowing a controller to

1. <?php
2. class RecipesController extends AppController {
3. var $name = 'Recipes';
4. var $uses = array('Recipe', 'User');
5. var $helpers = array('Ajax');
6. var $components = array('Email');
7. }
8. ?>

1. <?php
2. // Using $layout to define an alternate layout
3. class RecipesController extends AppController {
4. function quickSave() {
5. $this4>layout = 'ajax';
6. }
7. }
8. ?>

access additional models through the $uses variable, the name of the current controller's
model must also be included. This is illustrated in the example below.

The Html, Form, and Session Helpers are always available by default, as is the
SessionComponent. To learn more about these classes, be sure to check out their respective
sections later in this manual.

Let’s look at how to tell a CakePHP controller that you plan to use additional MVC classes.

Each of these variables are merged with their inherited values, therefore it is not necessary (for
example) to redeclare the Form helper, or anything that is declared in your App controller.

If you do not wish to use a Model in your controller, set var $uses = null or var $uses
= array(). This will allow you to use a controller without a need for a corresponding Model
file.

3.5.3.3 Page,related Attributes: $layout and $pageTitle

A few attributes exist in CakePHP controllers that give you control over how your view is set
inside of a layout.

The $layout attribute can be set to the name of a layout saved in /app/views/layouts.
You specify a layout by setting $layout equal to the name of the layout file minus the .ctp
extension. If this attribute has not been defined, CakePHP renders the default layout,
default.ctp. If you haven’t defined one at /app/views/layouts/default.ctp,
CakePHP’s core default layout will be rendered.

You can also change the title of the page (that is located in the bar at the top of your browser)
using $pageTitle. In order for this to work properly, your layout needs to include the $
title_for_layout variable, at least between the <title> and </title> tags in the head
of the HTML document.

1. <?php
2. // Using $pageTitle to define the page title
3. class RecipesController extends AppController {
4. function quickSave() {
5. $this4>pageTitle = 'My search engine optimized title';
6. }
7. }
8. ?>

You can also set the page title from the view using $this4>pageTitle (Youmust include the
$this4> part.) This is recommended, as it better separates the logic from the layout and
content. For a static page youmust use $this4>pageTitle in the view if you want a
different title.

If $this4>pageTitle is not set, a title will be automatically generated based on the
controller name, or the view file name in the case of a static page.

3.5.3.4 The Parameters Attribute ($params)

Controller parameters are available at $this4>params in your CakePHP controller. This
variable is used to provide access to information about the current request. The most common
usage of $this4>params is to get access to information that has been handed to the
controller via POST or GET operations.

3.5.3.4.1 form

$this4>params['form']

Any POST data from any form is stored here, including information also found in $_FILES.

3.5.3.4.2 admin

$this4>params['admin']

Is set to 1 if the current action was invoked via admin routing.

3.5.3.4.3 bare

$this4>params['bare']

Stores 1 if the current layout is empty, 0 if not.

3.5.3.4.4 isAjax

$this4>params['isAjax']

Stores 1 if the current request is an ajax call, 0 if not. This variable is only set if the
RequestHandler Component is being used in the controller.

3.5.3.4.5 controller

$this4>params['controller']

Stores the name of the current controller handling the request. For example, if the URL /
posts/view/1 was requested, $this4>params['controller'] would equal "posts".

3.5.3.4.6 action

$this4>params['action']

Stores the name of the current action handling the request. For example, if the URL /posts/
view/1 was requested, $this4>params['action'] would equal "view".

3.5.3.4.7 pass

$this4>params['pass']

Returns an array (numerically indexed) of URL parameters after the Action.

// URL: /posts/view/12/print/narrow

Array
(
 [0] => 12
 [1] => print
 [2] => narrow
)

3.5.3.4.8 url

$this4>params['url']

Stores the current URL requested, along with key�value pairs of get variables. For example, if
the URL /posts/view/?var1=3&var2=4 was called, $this4>params['url'] would
contain:

[url] => Array
(
 [url] => posts/view
 [var1] => 3
 [var2] => 4
)

1. // The FormHelper is used to create a form element:
2. $form4>text('User.first_name');

1.
2. //The submitted first name can be found here:
3. $this4>data['User']['first_name'];

3.5.3.4.9 data

$this4>data

Used to handle POST data sent from the FormHelper forms to the controller.

Which when rendered, looks something like:

<input name="data[User][first_name]" value="" type="text" />

When the form is submitted to the controller via POST, the data shows up in this4>data

3.5.3.4.10 prefix

$this4>params['prefix']

Set to the routing prefix. For example, this attribute would contain the string "admin" during a
request to /admin/posts/someaction.

3.5.3.4.11 named

$this4>params['named']

Stores any named parameters in the url query string in the form /key:value/. For example, if the
URL /posts/view/var1:3/var2:4 was requested, $this4>params['named'] would
be an array containing:

[named] => Array
(
 [var1] => 3
 [var2] => 4
)

3.5.3.5 Other Attributes

While you can check out the details for all controller attributes in the API, there are other
controller attributes that merit their own sections in the manual.

The $cacheAction attribute aids in caching views, and the $paginate attribute is used to set
pagination defaults for the controller. For more information on how to use these attributes,
check out their respective sections later on in this manual.

1. <?php
2.
3. //First you pass data from the controller:
4. $this4>set('color', 'pink');
5. //Then, in the view, you can utilize the data:
6. ?>
7.
8. You have selected <?php echo $color; ?> icing for the cake.

1. <?php
2.
3. $data = array(
4. 'color' => 'pink',
5. 'type' => 'sugar',
6. 'base_price' => 23.95
7.);
8. //make $color, $type, and $basePrice
9. //available to the view:
10. $this4>set($data);
11. ?>

3.5.3.6 persistModel

Stub. Update Me!

Used to create cached instances of models a controller uses. When set to true, all models
related to the controller will be cached. This can increase performance in many cases.

3.5.4 Controller Methods

For a complete list of controller methods and their descriptions visit the CakePHP API. Check
outhttp://api.cakephp.org/class/controller (http://api.cakephp.org/class/
controller) .

3.5.4.1 Interacting with Views

3.5.4.1.1 set

set(string $var, mixed $value)

The set()method is the main way to send data from your controller to your view. Once you've
used set(), the variable can be accessed in your view.

The set()method also takes an associative array as its first parameter. This can often be a
quick way to assign a set of information to the view.

Array keys will be inflected before they are assigned to the view ('underscored_key' becomes
'underscoredKey', etc.):

3.5.4.1.2 render

1. class RecipesController extends AppController {
2. ...
3. function search() {
4. // Render the view in /views/recipes/search.ctp
5. $this4>render();
6. }
7. ...
8. }

1. // Render the element in /views/elements/ajaxreturn.ctp
2. $this4>render('/elements/ajaxreturn');

1. function placeOrder() {
2. //Logic for finalizing order goes here
3. if($success) {
4. $this4>redirect(array('controller' => 'orders', 'action' =>
'thanks'));
5. } else {
6. $this4>redirect(array('controller' => 'orders', 'action' =>
'confirm'));
7. }
8. }

render(string $action, string $layout, string $file)

The render()method is automatically called at the end of each requested controller action.
This method performs all the view logic (using the data you’ve given in using the set()
method), places the view inside its layout and serves it back to the end user.

The default view file used by render is determined by convention. If the search() action of the
RecipesController is requested, the view file in /app/views/recipes/search.ctp will be
rendered.

Although CakePHP will automatically call it (unless you’ve set $this4>autoRender to
false) after every action’s logic, you can use it to specify an alternate view file by specifying an
action name in the controller using $action.

If $action starts with '/' it is assumed to be a view or element file relative to the /app/views
folder. This allows direct rendering of elements, very useful in ajax calls.

You can also specify an alternate view or element file using the third parameter, $file. When
using $file, don't forget to utilize a few of CakePHP’s global constants (such as VIEWS).

The $layout parameter allows you to specify the layout the view is rendered in.

3.5.4.2 Flow Control

3.5.4.2.1 redirect

redirect(string $url, integer $status, boolean $exit)

The flow control method you’ll use most often is redirect(). This method takes its first
parameter in the form of a CakePHP�relative URL. When a user has successfully placed an
order, youmight wish to redirect them to a receipt screen.

1. $this4>redirect('/orders/thanks'));
2. $this4>redirect('http://www.example.com');

1. $this4>redirect(array('action' => 'edit', $id));

1. $this4>redirect($this4>referer());

You can also use a relative or absolute URL as the $url argument:

You can also pass data to the action:

The second parameter of redirect() allows you to define an HTTP status code to
accompany the redirect. Youmay want to use 301 (moved permanently) or 303 (see other),
depending on the nature of the redirect.

The method will issue an exit() after the redirect unless you set the third parameter to
false.

If you need to redirect to the referer page you can use:

3.5.4.2.2 flash

flash(string $message, string $url, integer $pause)

Like redirect(), the flash()method is used to direct a user to a new page after an
operation. The flash()method is different in that it shows a message before passing the user
on to another URL.

The first parameter should hold the message to be displayed, and the second parameter is a
CakePHP�relative URL. CakePHP will display the $message for $pause seconds before
forwarding the user on.

For in�page flash messages, be sure to check out SessionComponent’s setFlash() method.

3.5.4.3 Callbacks

CakePHP controllers come fitted with callbacks you can use to insert logic just before or after
controller actions are rendered.

beforeFilter()

This function is executed before every action in the controller. It's a handy place to check for an
active session or inspect user permissions.

beforeRender()

Called after controller action logic, but before the view is rendered. This callback is not used
often, but may be needed if you are calling render() manually before the end of a given action.

afterFilter()

Called after every controller action, and after rendering is complete. This is the last controller
method to run.

CakePHP also supports callbacks related to scaffolding.

_beforeScaffold($method)

$method name of method called example index, edit, etc.

_afterScaffoldSave($method)

$method name of method called either edit or update.

_afterScaffoldSaveError($method)

$method name of method called either edit or update.

_scaffoldError($method)

$method name of method called example index, edit, etc.

3.5.4.4 Other Useful Methods

3.5.4.4.1 constructClasses

This method loads the models required by the controller. This loading process is done by
CakePHP normally, but this method is handy to have when accessing controllers from a
different perspective. If you need CakePHP in a command�line script or some other outside use,
constructClasses() may come in handy.

3.5.4.4.2 referer

Returns the referring URL for the current request.

3.5.4.4.3 disableCache

Used to tell the user’s browser not to cache the results of the current request. This is different
than view caching, covered in a later chapter.

The headers sent to this effect are:

Expires: Mon, 26 Jul 1997 05:00:00 GMT
Last4Modified: [current datetime] GMT
Cache4Control: no4store, no4cache, must4revalidate
Cache4Control: post4check=0, pre4check=0
Pragma: no4cache

3.5.4.4.4 postConditions

postConditions(array $data, mixed $op, string $bool, boolean $
exclusive)

1. function index() {
2. $o = $this4>Order4>findAll($this4>postConditions($this4>data));
3. $this4>set('orders', $o);
4. }

1. /*
2. Contents of $this4>data
3. array(
4. 'Order' => array(
5. 'num_items' => '4',
6. 'referrer' => 'Ye Olde'
7.)
8.)
9. */
10. //Let’s get orders that have at least 4 items and contain ‘Ye Olde’
11. $o = $this4>Order4>findAll($this4>postConditions(
12. $this4>data,
13. array(
14. 'num_items' => '>=',
15. 'referrer' => 'LIKE'
16.)
17.));

Use this method to turn a set of POSTedmodel data (fromHtmlHelper�compatible inputs) into
a set of find conditions for a model. This function offers a quick shortcut on building search
logic. For example, an administrative user may want to be able to search orders in order to
know which items need to be shipped. You can use CakePHP’s Form� and HtmlHelpers to
create a quick form based on the Order model. Then a controller action can use the data posted
from that form to craft find conditions:

If $this�>data[‘Order’][‘destination’] equals “Old Towne Bakery”, postConditions converts that
condition to an array compatible for use in a Model�>findAll() method. In this case, array
(“Order.destination” => “Old Towne Bakery”).

If you want use a different SQL operator between terms, supply them using the second
parameter.

The third parameter allows you to tell CakePHP what SQL boolean operator to use between the
find conditions. String like ‘AND’, ‘OR’ and ‘XOR’ are all valid values.

Finally, if the last parameter is set to true, and the $op parameter is an array, fields not
included in $op will not be included in the returned conditions.

3.5.4.4.5 paginate

This method is used for paginating results fetched by your models. You can specify page sizes,
model find conditions andmore. See the pagination (http://book.cakephp.org/view/164/
pagination) section for more details on how to use paginate.

3.5.4.4.6 requestAction

requestAction(string $url, array $options)

1. // controllers/comments_controller.php
2. class CommentsController extends AppController {
3. function latest() {
4. return $this4>Comment4>find('all', array('order' =>
'Comment.created DESC', 'limit' => 10));
5. }
6. }

1. // views/elements/latest_comments.ctp
2. $comments = $this4>requestAction('/comments/latest');
3. foreach($comments as $comment) {
4. echo $comment['Comment']['title'];
5. }

1. echo $this4>element('latest_comments');

1. echo $this4>element('latest_comments', array('cache'=>'+1 hour'));

1. echo $this4>requestAction(array('controller' => 'articles', 'action' =>
'featured'), array('return'));

1. echo $this4>requestAction('/articles/featured/limit:3');
2. echo $this4>requestAction('/articles/view/5');

This function calls a controller's action from any location and returns data from the action.
The $url passed is a CakePHP�relative URL (/controllername/actionname/params).
To pass extra data to the receiving controller action add to the $options array.

You can use requestAction() to retrieve a fully rendered view by passing 'return' in the
options: requestAction($url, array('return'));

If used without caching requestAction can lead to poor performance. It is rarely
appropriate to use in a controller or model.

requestAction is best used in conjunction with (cached) elements – as a way to fetch data
for an element before rendering. Let's use the example of putting a "latest comments" element
in the layout. First we need to create a controller function that will return the data.

If we now create a simple element to call that function:

We can then place that element anywhere at all to get the output using:

Written in this way, whenever the element is rendered, a request will be made to the controller
to get the data, the data will be processed, and returned. However in accordance with the
warning above it's best to make use of element caching to prevent needless processing. By
modifying the call to element to look like this:

The requestAction call will not be made while the cached element view file exists and is
valid.

In addition, requestAction now takes array based cake style urls:

This allows the requestAction call to bypass the usage of Router::url which can increase
performance. The url based arrays are the same as the ones that HtmlHelper::link uses with
one difference � if you are using named or passed parameters, youmust put them in a second
array and wrap them with the correct key. This is because requestAction only merges the
named args array into the Controller::params member array and does not place the named args
in the key 'named'.

1. echo $this4>requestAction(array('controller' => 'articles', 'action' =>
'featured'), array('named' => array('limit' => 3)));
2. echo $this4>requestAction(array('controller' => 'articles', 'action' =>
'view'), array('pass' => array(5)));

1. $this4>loadModel('Article');
2. $recentArticles = $this4>Article4>find('all', array('limit' => 5,
'order' => 'Article.created DESC'));

1. $this4>loadModel('User', 2);
2. $user = $this4>User4>read();

As an array in the requestAction would then be:

Unlike other places where array urls are analogous to string urls, requestAction treats them
differently.

When using an array url in conjunction with requestAction() youmust specify all parameters
that you will need in the requested action. This includes parameters like $this4>data and $
this4>params['form']. In addition to passing all required parameters, named and pass
parameters must be done in the second array as seen above.

3.5.4.4.7 loadModel

loadModel(string $modelClass, mixed $id)

The loadModel function comes handy when you need to use a model which is not the
controller's default model or its associated model.

3.6 Components

3.6.1 Introduction

Components are packages of logic that are shared between controllers. If you find yourself
wanting to copy and paste things between controllers, youmight consider wrapping some
functionality in a component.

CakePHP also comes with a fantastic set of core components you can use to aid in:

Security
Sessions
Access control lists
Emails
Cookies
Authentication
Request handling

Each of these core components are detailed in their own chapters. For now, we’ll show you
how to create your own components. Creating components keeps controller code clean and
allows you to reuse code between projects.

3.6.2 Configuring Components

1. function beforeFilter() {
2. $this4>Auth4>authorize = 'controller';
3. $this4>Auth4>loginAction = array('controller' => 'users', 'action'
=> 'login');
4.
5. $this4>Cookie4>name = 'CookieMonster';
6. }

1. var $components = array('DebugKit.toolbar' => array('panels' => array
('history', 'session'));

1. <?php
2. class MathComponent extends Object {
3. function doComplexOperation($amount1, $amount2) {
4. return $amount1 + $amount2;
5. }
6. }
7. ?>

1. /* Make the new component available at $this4>Math,
2. as well as the standard $this4>Session */
3. var $components = array('Math', 'Session');

Many of the core components require configuration. Some examples of components requiring
configuration areAuth (http://book.cakephp.org/view/172/Authentication) , Cookie
(http://book.cakephp.org/view/177/Cookies) andEmail (http://book.cakephp.org/
view/176/Email) . Configuration for these components, and components in general is usually
done in your Controller's beforeFilter()method.

Would be an example of configuring component variables in your controller's beforeFilter
()

It's possible, however, that a component requires certain configuration options to be set before
the controller's beforeFilter is run. To this end, some components allow configuration
options be set in the $components array.

Consult the relevant documentation to determine what configuration options each component
provides.

3.6.3 Creating Components

Suppose our online application needs to perform a complex mathematical operation in many
different parts of the application. We could create a component to house this shared logic for
use in many different controllers.

The first step is to create a new component file and class. Create the file in /app/controllers/
components/math.php. The basic structure for the component would look something like this:

3.6.3.1 Including Components in your Controllers

Once our component is finished, we can use it in the application's controllers by placing the
component's name (minus the "Component" part) in the controller's $components array. The
controller will automatically be given a new attribute named after the component, through
which we can access an instance of it:

1. var $components = array(
2. 'Math' => array(
3. 'precision' => 2,
4. 'randomGenerator' => 'srand'
5.),
6. 'Session', 'Auth'
7.);

Components declared in AppController will be merged with those in your other controllers.
So there is no need to re�declare the same component twice.

When including Components in a Controller you can also declare a set of parameters that will
be passed on to the Component's initialize()method. These parameters can then be
handled by the Component.

The above would pass the array containing precision and randomGenerator to
MathComponent's initialize() method as the second parameter.

This syntax is not implemented by any of the Core Components at this time

3.6.3.2 MVC Class Access Within Components

Components feature a number of callbacks used by the parent controller class. Judicious use of
these callbacks can make creating and using components much easier..

initialize(&$controller, $settings=array())

The initialize method is called before the controller's beforeFilter method.

startup(&$controller)

The startup method is called after the controller's beforeFilter method but before the controller
executes the current action handler.

beforeRender(&$controller)

The beforeRender method is called after the controller's beforeRender method but before the
controller's renders views and layout.

shutdown(&$controller)

The shutdown method is called before output is sent to browser.

beforeRedirect(&$controller, $url, $status=null, $exit=true)

The beforeRedirect method is invoked when the controller's redirect method is called but before
any further action. If this method returns false the controller will not continue on to redirect the
request. The $url, $status and $exit variables have same meaning as for the controller's
method.

Here is a skeleton component you can use as a template for your own custom components.

1. <?php
2. class SkeletonComponent extends Object {
3. //called before Controller::beforeFilter()
4. function initialize(&$controller, $settings = array()) {
5. // saving the controller reference for later use
6. $this4>controller =& $controller;
7. }
8. //called after Controller::beforeFilter()
9. function startup(&$controller) {
10. }
11. //called after Controller::beforeRender()
12. function beforeRender(&$controller) {
13. }
14. //called after Controller::render()
15. function shutdown(&$controller) {
16. }
17. //called before Controller::redirect()
18. function beforeRedirect(&$controller, $url, $status=null, $
exit=true) {
19. }
20. function redirectSomewhere($value) {
21. // utilizing a controller method
22. $this4>controller4>redirect($value);
23. }
24. }
25. ?>

1. <?php
2. class MyComponent extends Object {
3. // This component uses other components
4. var $components = array('Session', 'Math');
5. function doStuff() {
6. $result = $this4>Math4>doComplexOperation(1, 2);
7. $this4>Session4>write('stuff', $result);
8. }
9. }
10. ?>

1. <?php
2. class MathComponent extends Object {
3. function doComplexOperation($amount1, $amount2) {
4. return $amount1 + $amount2;
5. }
6. function doReallyComplexOperation ($amount1, $amount2) {
7. $userInstance = ClassRegistry::init('User');
8. $totalUsers = $userInstance4>find('count');
9. return ($amount1 + $amount2) / $totalUsers;
10. }
11. }
12. ?>

Youmight also want to utilize other components inside a custom component. To do so, just
create a $components class variable (just like you would in a controller) as an array that holds
the names of components you wish to utilize.

To access/use a model in a component is not generally recommended; If you end up needing
one, you'll need to instantiate your model class and use it manually. Here's an example:

1. <?php
2. class CustomComponent extends Object {
3. var $name = "Custom"; // the name of your component
4. var $components = array("Existing"); // the other component your
component uses
5. function initialize(&$controller) {
6. $this4>Existing4>foo();
7. }
8. function bar() {
9. // ...
10. }
11. }
12. ?>

1. <?php
2. class ExistingComponent extends Object {
3. var $name = "Existing";
4. function initialize(&$controller) {
5. $this4>Parent4>bar();
6. }
7. function foo() {
8. // ...
9. }
10. }
11. ?>

3.6.3.3 Using other Components in your Component

Sometimes one of your components may need to use another.

You can include other components in your component the exact same way you include them in
controllers: Use the $components var.

3.7 Models

Models represent data and are used in CakePHP applications for data access. A model usually
represents a database table but can be used to access anything that stores data such as files,
LDAP records, iCal events, or rows in a CSV file.

A model can be associated with other models. For example, a Recipe may be associated with
the Author of the recipe as well as the Ingredient in the recipe.

This section will explain what features of the model can be automated, how to override those
features, and what methods and properties a model can have. It'll explain the different ways to
associate your data. It'll describe how to find, save, and delete data. Finally, it'll look at
Datasources.

3.7.1 Understanding Models

A Model represents your data model and in object�oriented programming is an object that
represents a "thing", like a car, a person, or a house. A blog, for example, may have many blog
posts and each blog post may have many comments. The Blog, Post, and Comment are all
examples of models, each associated with another.

Here is a simple example of a model definition in CakePHP:

1. <?php
2. class Ingredient extends AppModel {
3. var $name = 'Ingredient';
4. }
5. ?>

1. <?php
2. class IngredientsController extends AppController {
3. function index() {
4. //grab all ingredients and pass it to the view:
5. $ingredients = $this4>Ingredient4>find('all');
6. $this4>set('ingredients', $ingredients);
7. }
8. }
9. ?>

With just this simple declaration, the Ingredient model is bestowed with all the functionality
you need to create queries along with saving and deleting data. These magic methods come
from CakePHP's Model class by the magic of inheritance. The Ingredient model extends the
application model, AppModel, which extends CakePHP's internal Model class. It is this core
Model class that bestows the functionality onto your Ingredient model.

This intermediate class, AppModel, is empty and if you haven't created your own is taken from
within the /cake/ folder. Overriding the AppModel allows you to define functionality that
should be made available to all models within your application. To do so, you need to create
your own app_model.php file that resides in the root of the /app/ folder. Creating a project
using Bake (http://book.cakephp.org/view/113/code+generation+with+bake) will
automatically generate this file for you.

Create your model PHP file in the /app/models/ directory or in a subdirectory of /app/
models. CakePHP will find it anywhere in the directory. By convention it should have the
same name as the class; for this example ingredient.php.

CakePHP will dynamically create a model object for you if it cannot find a corresponding file in
/app/models. This also means that if your model file isn't named correctly (i.e.
Ingredient.php or ingredients.php) CakePHP will use a instance of AppModel rather
than your awol (from CakePHP's perspective) model file. If you're trying to use a method you've
defined in your model, or a behavior attached to your model and you're getting SQL errors that
are the name of the method you're calling � it's a sure sign CakePHP can't find your model and
you either need to check the file names, clear your tmp files, or both.

See also Behaviors (http://book.cakephp.org/view/88/behaviors) for more information
on how to apply similar logic to multiple models.

The $name property is necessary for PHP4 but optional for PHP5.

With your model defined, it can be accessed from within your Controller (http://
book.cakephp.org/view/49/controllers) . CakePHP will automatically make the model
available for access when its name matches that of the controller. For example, a controller
named IngredientsController will automatically initialize the Ingredient model and attach it to
the controller at $this4>Ingredient.

Associated models are available through the main model. In the following example, Recipe has
an association with the Ingredient model.

1. <?php
2. class RecipesController extends AppController {
3. function index() {
4. $ingredients = $this4>Recipe4>Ingredient4>find('all');
5. $this4>set('ingredients', $ingredients);
6. }
7. }
8. ?>

1. <?php
2. class RecipesController extends AppController {
3. function index() {
4. $recipes = $this4>Recipe4>find('all');
5.
6. $this4>loadModel('Car');
7. $cars = $this4>Car4>find('all');
8.
9. $this4>set(compact('recipes', 'cars'));
10. }
11. }
12. ?>

If models have absolutely NO association between them, you can use Controller::loadModel()
to get the model.

3.7.2 Creating Database Tables

While CakePHP can have datasources that aren't database driven, most of the time, they are.
CakePHP is designed to be agnostic and will work with MySQL, MSSQL, Oracle, PostgreSQL
and others. You can create your database tables as you normally would. When you create your
Model classes, they'll automatically map to the tables that you've created.

Table names are by convention lowercase and pluralized with multi�word table names
separated by underscores. For example, a Model name of Ingredient expects the table name
ingredients. A Model name of EventRegistration would expect a table name of event_
registrations. CakePHP will inspect your tables to determine the data type of each field and
uses this information to automate various features such as outputting form fields in the view.

Field names are by convention lowercase and separated by underscores.

Model to table name associations can be overridden with the useTable attribute of the model
explained later in this chapter.

In the rest of this section, you'll see how CakePHP maps database field types to PHP data types
and how CakePHP can automate tasks based on how your fields are defined.

3.7.2.1 Data Type Associations by Database

EveryRDBMS (http://en.wikipedia.org/wiki/Relational_database_management_
system) defines data types in slightly different ways. Within the datasource class for each
database system, CakePHP maps those types to something it recognizes and creates a unified
interface, no matter which database system you need to run on.

This breakdown describes how each one is mapped.

3.7.2.1.1 MySQL

CakePHP Type Field Properties

primary_key NOT NULL auto_increment

string varchar(255)

text text

integer int(11)

float float

datetime datetime

timestamp datetime

time time

date date

binary blob

boolean tinyint(1)

3.7.2.1.2 MySQLi

CakePHP Type Field Properties

primary_key DEFAULT NULL auto_increment

string varchar(255)

text text

integer int(11)

float float

datetime datetime

timestamp datetime

time time

date date

binary blob

boolean tinyint(1)

3.7.2.1.3 ADOdb

CakePHP Type Field Properties

primary_key R(11)

string C(255)

text X

integer I(11)

float N

datetime T (Y�m�d H:i:s)

timestamp T (Y�m�d H:i:s)

time T (H:i:s)

date T (Y�m�d)

binary B

boolean L(1)

3.7.2.1.4 DB2

CakePHP Type Field Properties

primary_key not null generated by default as identity (start with 1,
increment by 1)

string varchar(255)

text clob

integer integer(10)

float double

datetime timestamp (Y�m�d�H.i.s)

timestamp timestamp (Y�m�d�H.i.s)

time time (H.i.s)

date date (Y�m�d)

binary blob

boolean smallint(1)

3.7.2.1.5 Firebird/Interbase

CakePHP Type Field Properties

primary_key IDENTITY (1, 1) NOT NULL

string varchar(255)

text BLOB SUB_TYPE 1 SEGMENT SIZE 100
CHARACTER SET NONE

integer integer

float float

datetime timestamp (d.m.Y H:i:s)

timestamp timestamp (d.m.Y H:i:s)

time time (H:i:s)

date date (d.m.Y)

binary blob

boolean smallint

3.7.2.1.6 MS SQL

CakePHP Type Field Properties

primary_key IDENTITY (1, 1) NOT NULL

string varchar(255)

text text

integer int

float numeric

datetime datetime (Y�m�d H:i:s)

timestamp timestamp (Y�m�d H:i:s)

time datetime (H:i:s)

date datetime (Y�m�d)

binary image

boolean bit

3.7.2.1.7 Oracle

CakePHP Type Field Properties

primary_key number NOT NULL

string varchar2(255)

text varchar2

integer numeric

float float

datetime date (Y�m�d H:i:s)

timestamp date (Y�m�d H:i:s)

time date (H:i:s)

date date (Y�m�d)

binary bytea

boolean boolean

number numeric

inet inet

3.7.2.1.8 PostgreSQL

CakePHP Type Field Properties

primary_key serial NOT NULL

string varchar(255)

text text

integer integer

float float

datetime timestamp (Y�m�d H:i:s)

timestamp timestamp (Y�m�d H:i:s)

time time (H:i:s)

date date (Y�m�d)

binary bytea

boolean boolean

number numeric

inet inet

3.7.2.1.9 SQLite

CakePHP Type Field Properties

primary_key integer primary key

string varchar(255)

text text

integer integer

float float

datetime datetime (Y�m�d H:i:s)

timestamp timestamp (Y�m�d H:i:s)

time time (H:i:s)

date date (Y�m�d)

binary blob

boolean boolean

3.7.2.1.10 Sybase

CakePHP Type Field Properties

primary_key numeric(9,0) IDENTITY PRIMARY KEY

string varchar(255)

text text

integer int(11)

float float

datetime datetime (Y�m�d H:i:s)

timestamp timestamp (Y�m�d H:i:s)

time datetime (H:i:s)

date datetime (Y�m�d)

binary image

boolean bit

3.7.2.2 Titles

An object, in the physical sense, often has a name or a title that refers to it. A person has a
name like John or Mac or Buddy. A blog post has a title. A category has a name.

By specifying a title or name field, CakePHP will automatically use this label in various
circumstances:

Scaffolding — page titles, fieldset labels
Lists — normally used for <select> drop�downs
TreeBehavior — reordering, tree views

If you have a title and name field in your table, the title will be used.

3.7.2.3 created and modified

By defining a created or modified field in your database table as datetime fields,
CakePHP will recognize those fields and populate them automatically whenever a record is
created or saved to the database (unless the data being saved already contains a value for these
fields).

The created and modified fields will be set to the current date and time when the record is
initially added. The modified field will be updated with the current date and time whenever
the existing record is saved.

Note: A field named updated will exhibit the same behavior as modified. These fields need
to be datetime fields with the default value set to NULL to be recognized by CakePHP.

3.7.2.4 Using UUIDs as Primary Keys

Primary keys are normally defined as INT fields. The database will automatically increment the
field, starting at 1, for each new record that gets added. Alternatively, if you specify your
primary key as a CHAR(36) or BINARY(36), CakePHP will automatically generateUUIDs
(http://en.wikipedia.org/wiki/UUID) when new records are created.

A UUID is a 32 byte string separated by four hyphens, for a total of 36 characters. For example:

550e84004e29b441d44a7164446655440000

UUIDs are designed to be unique, not only within a single table, but also across tables and
databases. If you require a field to remain unique across systems then UUIDs are a great
approach.

1. array(
2. 'conditions' => array('Model.field' => $thisValue), //array of
conditions
3. 'recursive' => 1, //int
4. 'fields' => array('Model.field1', 'DISTINCT Model.field2'), //array
of field names
5. 'order' => array('Model.created', 'Model.field3 DESC'), //string or
array defining order
6. 'group' => array('Model.field'), //fields to GROUP BY
7. 'limit' => n, //int
8. 'page' => n, //int
9. 'callbacks' => true //other possible values are false, 'before',
'after'
10.)

1. function some_function() {
2. ...
3. $this4>Article4>order = null; // resetting if it's set
4. $semiRandomArticle = $this4>Article4>find();
5. $this4>Article4>order = 'Article.created DESC'; // simulating the
model having a default order
6. $lastCreated = $this4>Article4>find();
7. $alsoLastCreated = $this4>Article4>find('first', array('order' =>
array('Article.created DESC')));
8. $specificallyThisOne = $this4>Article4>find('first', array
('conditions' => array('Article.id' => 1)));
9. ...
10. }

3.7.3 Retrieving Your Data

3.7.3.1 find

find($type, $params)

Find is the multifunctional workhorse of all model data�retrieval functions. $type can be
either 'all', 'first', 'count', 'list', 'neighbors' or 'threaded'. The default
find type is 'first'.

$params is used to pass all parameters to the various finds, and has the following possible
keys by default � all of which are optional:

It's also possible to add and use other parameters, as is made use of by some find types,
behaviors and of course possible with your own model methods

More information about model callbacks is available here (http://book.cakephp.org/
view/76/Callback+Methods)

3.7.3.1.1 find('first')

find('first', $params)

'first' is the default find type, and will return one result, you'd use this for any use where you
expect only one result. Below are a couple of simple (controller code) examples:

1. function some_function() {
2. ...
3. $total = $this4>Article4>find('count');
4. $pending = $this4>Article4>find('count', array('conditions' => array
('Article.status' => 'pending')));
5. $authors = $this4>Article4>User4>find('count');
6. $publishedAuthors = $this4>Article4>find('count', array(
7. 'fields' => 'DISTINCT Article.user_id',
8. 'conditions' => array('Article.status !=' => 'pending')
9.));
10. ...
11. }

In the first example, no parameters at all are passed to find � therefore no conditions or sort
order will be used. The format returned from find('first') call is of the form:

Array
(
 [ModelName] => Array
 (
 [id] => 83
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

 [AssociatedModelName] => Array
 (
 [id] => 1
 [field1] => value1
 [field2] => value2
 [field3] => value3
)
)

There are no additional parameters used by find('first').

3.7.3.1.2 find('count')

find('count', $params)

find('count', $params) returns an integer value. Below are a couple of simple
(controller code) examples:

Don't pass fields as an array to find('count'). You would only need to specify fields for
a DISTINCT count (since otherwise, the count is always the same � dictated by the conditions).

There are no additional parameters used by find('count').

3.7.3.1.3 find('all')

1. function some_function() {
2. ...
3. $allArticles = $this4>Article4>find('all');
4. $pending = $this4>Article4>find('all', array('conditions' => array
('Article.status' => 'pending')));
5. $allAuthors = $this4>Article4>User4>find('all');
6. $allPublishedAuthors = $this4>Article4>User4>find('all', array
('conditions' => array('Article.status !=' => 'pending')));
7. ...
8. }

find('all', $params)

find('all') returns an array of (potentially multiple) results. It is in fact the mechanism
used by all find() variants, as well as paginate. Below are a couple of simple (controller
code) examples:

In the above example $allAuthors will contain every user in the users table, there will be no
condition applied to the find as none were passed.

The results of a call to find('all') will be of the following form:

Array
(
 [0] => Array
 (
 [ModelName] => Array
 (
 [id] => 83
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

 [AssociatedModelName] => Array
 (
 [id] => 1
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

)
)

There are no additional parameters used by find('all').

3.7.3.1.4 find('list')

find('list', $params)

1. function some_function() {
2. ...
3. $allArticles = $this4>Article4>find('list');
4. $pending = $this4>Article4>find('list', array('conditions' => array
('Article.status' => 'pending')));
5. $allAuthors = $this4>Article4>User4>find('list');
6. $allPublishedAuthors = $this4>Article4>User4>find('list', array
('conditions' => array('Article.status !=' => 'pending')));
7. ...
8. }

1. function some_function() {
2. ...
3. $justusernames = $this4>Article4>User4>find('list', array('fields' =>
array('User.username')));
4. $usernameMap = $this4>Article4>User4>find('list', array('fields' =>
array('User.username', 'User.first_name')));
5. $usernameGroups = $this4>Article4>User4>find('list', array('fields'
=> array('User.username', 'User.first_name', 'User.group')));
6. ...
7. }

find('list', $params) returns an indexed array, useful for any use where you would
want a list such as for populating input select boxes. Below are a couple of simple (controller
code) examples:

In the above example $allAuthors will contain every user in the users table, there will be no
condition applied to the find as none were passed.

The results of a call to find('list') will be in the following form:

Array
(
 //[id] => 'displayValue',
 [1] => 'displayValue1',
 [2] => 'displayValue2',
 [4] => 'displayValue4',
 [5] => 'displayValue5',
 [6] => 'displayValue6',
 [3] => 'displayValue3',
)

When calling find('list') the fields passed are used to determine what should be used
as the array key, value and optionally what to group the results by. By default the primary key
for the model is used for the key, and the display field is used for the value. Some further
examples to clarify:.

With the above code example, the resultant vars would look something like this:

$justusernames = Array
(
 //[id] => 'username',
 [213] => 'AD7six',
 [25] => '_psychic_',
 [1] => 'PHPNut',
 [2] => 'gwoo',

1. function some_function() {
2. ...
3. $allCategories = $this4>Category4>find('threaded');
4. $aCategory = $this4>Category4>find('first', array('conditions' =>
array('parent_id' => 42)); // not the root
5. $someCategories = $this4>Category4>find('threaded', array(
6. 'conditions' => array(
7. 'Article.lft >=' => $aCategory['Category']['lft'],
8. 'Article.rght <=' => $aCategory['Category']['rght']
9.)
10.));
11. ...
12. }

 [400] => 'jperras',
)

$usernameMap = Array
(
 //[username] => 'firstname',
 ['AD7six'] => 'Andy',
 ['_psychic_'] => 'John',
 ['PHPNut'] => 'Larry',
 ['gwoo'] => 'Gwoo',
 ['jperras'] => 'Joël',
)

$usernameGroups = Array
(
 ['Uber'] => Array
 (

 ['PHPNut'] => 'Larry',
 ['gwoo'] => 'Gwoo',

)

 ['Admin'] => Array
 (

 ['_psychic_'] => 'John',
 ['AD7six'] => 'Andy',
 ['jperras'] => 'Joël',

)

)

3.7.3.1.5 find('threaded')

find('threaded', $params)

find('threaded', $params) returns a nested array, and is appropriate if you want to use
the parent_id field of your model data to build nested results. Below are a couple of simple
(controller code) examples:

It is not necessary to use the Tree behavior (http://book.cakephp.org/view/91/Tree) to
use this method � but all desired results must be possible to be found in a single query.

In the above code example, $allCategories will contain a nested array representing the
whole category structure. The second example makes use of the data structure used by the Tree
behavior (http://book.cakephp.org/view/91/Tree) the return a partial, nested, result for $
aCategory and everything below it. The results of a call to find('threaded') will be of
the following form:

Array
(
 [0] => Array
 (
 [ModelName] => Array
 (
 [id] => 83
 [parent_id] => null
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

 [AssociatedModelName] => Array
 (
 [id] => 1
 [field1] => value1
 [field2] => value2
 [field3] => value3
)
 [children] => Array
 (

 [0] => Array
(
 [ModelName] => Array

(
 [id] => 42

 [parent_id] => 83
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

 [AssociatedModelName] => Array
(
 [id] => 2
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

 [children] => Array
(
)

)

1. function some_function() {
2. $neighbors = $this4>Article4>find('neighbors', array('field' => 'id',
'value' => 3));
3. }

...
)
)
)

The order results appear can be changed as it is influence by the order of processing. For
example, if 'order' => 'name ASC' is passed in the params to find('threaded'), the
results will appear in name order. Likewise any order can be used, there is no inbuilt
requirement of this method for the top result to be returned first.

There are no additional parameters used by find('threaded').

3.7.3.1.6 find('neighbors')

find('neighbors', $params)

'neighbors' will perform a find similar to 'first', but will return the row before and after the one
you request. Below is a simple (controller code) example:

You can see in this example the two required elements of the $params array: field and value.
Other elements are still allowed as with any other find (Ex: If your model acts as containable,
then you can specify 'contain' in $params). The format returned from a find
('neighbors') call is in the form:

Array
(
 [prev] => Array
 (
 [ModelName] => Array
 (
 [id] => 2
 [field1] => value1
 [field2] => value2
 ...
)
 [AssociatedModelName] => Array
 (
 [id] => 151
 [field1] => value1
 [field2] => value2
 ...
)
)
 [next] => Array
 (
 [ModelName] => Array
 (
 [id] => 4

 [field1] => value1
 [field2] => value2
 ...
)
 [AssociatedModelName] => Array
 (
 [id] => 122
 [field1] => value1
 [field2] => value2
 ...
)
)
)

Note how the result always contains only two root elements: prev and next.

3.7.3.2 findAll

findAll(string $conditions, array $fields, string $order, int $
limit, int $page, int $recursive)

findAll has been deprecated, use find('all') (http://book.cakephp.org/view/449/
find) instead.

Returns the specified fields up to $limit records matching $conditions (if any), start listing
from page $page (default is page 1). If there are no matching fields, an empty array is
returned.

The $conditions should be formed just as they would in an SQL statement: $conditions
= "Pastry.type LIKE '%cake%' AND Pastry.created_on > '2007401401'",
for example. Prefixing conditions with the model's name ('Pastry.type' rather than just
'type') is always a good practice, especially when associated data is being fetched in a query.

Setting the $recursive parameter to an integer forces findAll() to fetch data according to
the behavior described in the Model Attributes $recursive section outlined earlier. Do not
forget to manually add the required foreign key columns to the $fields array as described
there.

Data from findAll() is returned in an array, following this basic format:

Array
(
 [0] => Array
 (
 [ModelName] => Array
 (
 [id] => 83
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

 [AssociatedModelName] => Array

 (
 [id] => 1
 [field1] => value1
 [field2] => value2
 [field3] => value3
)
)
 [1] => Array
 (
 [ModelName] => Array
 (
 [id] => 85
 [field1] => value1
 [field2] => value2
 [field3] => value3
)

 [AssociatedModelName] => Array
 (
 [id] => 2
 [field1] => value1
 [field2] => value2
 [field3] => value3
)
)
)

3.7.3.3 findAllBy

findAllBy<fieldName>(string $value)

These magic functions can be used as a shortcut to search your tables by a certain field. Just
add the name of the field (in CamelCase format) to the end of these functions, and supply the
criteria for that field as the first parameter.

PHP5 findAllBy<x> Example Corresponding SQL Fragment

$this�>Product�>findAllByOrderStatus(‘3’); Product.order_status = 3

$this�>Recipe�>findAllByType(‘Cookie’); Recipe.type = ‘Cookie’

$this�>User�>findAllByLastName(‘Anderson’); User.last_name = ‘Anderson’

$this�>Cake�>findById(7); Cake.id = 7

$this�>User�>findByUserName(‘psychic’); User.user_name = ‘psychic’

PHP4 users have to use this function a little differently due to some case�insensitivity in PHP4:

PHP4 findAllBy<x> Example Corresponding SQL Fragment

$this�>Product�>findAllByOrder_status(‘3’); Product.order_status = 3

$this�>Recipe�>findAllByType(‘Cookie’); Recipe.type = ‘Cookie’

$this�>User�>findAllByLast_name(‘Anderson’); User.last_name = ‘Anderson’

$this�>Cake�>findById(7); Cake.id = 7

$this�>User�>findByUser_name(‘psychic’); User.user_name = ‘psychic’

findBy() functions like find('first',...), while findAllBy() functions like find('all',...).

In either case, the returned result is an array formatted just as it would be from find() or findAll
(), respectively.

3.7.3.4 findBy

findBy<fieldName>(string $value)

These magic functions can be used as a shortcut to search your tables by a certain field. Just
add the name of the field (in CamelCase format) to the end of these functions, and supply the
criteria for that field as the first parameter.

PHP5 findAllBy<x> Example Corresponding SQL Fragment

$this�>Product�>findAllByOrderStatus(‘3’); Product.order_status = 3

$this�>Recipe�>findAllByType(‘Cookie’); Recipe.type = ‘Cookie’

$this�>User�>findAllByLastName(‘Anderson’); User.last_name = ‘Anderson’

$this�>Cake�>findById(7); Cake.id = 7

$this�>User�>findByUserName(‘psychic’); User.user_name = ‘psychic’

PHP4 users have to use this function a little differently due to some case�insensitivity in PHP4:

PHP4 findAllBy<x> Example Corresponding SQL Fragment

$this�>Product�>findAllByOrder_status(‘3’); Product.order_status = 3

$this�>Recipe�>findAllByType(‘Cookie’); Recipe.type = ‘Cookie’

$this�>User�>findAllByLast_name(‘Anderson’); User.last_name = ‘Anderson’

$this�>Cake�>findById(7); Cake.id = 7

$this�>User�>findByUser_name(‘psychic’); User.user_name = ‘psychic’

findBy() functions like find('first',...), while findAllBy() functions like find('all',...).

In either case, the returned result is an array formatted just as it would be from find() or findAll
(), respectively.

3.7.3.5 findNeighbours

findNeighbours(string $conditions, mixed $field, string $value)

findNeighbours has been deprecated, use find('neighbors') (http://
book.cakephp.org/view/449/find) instead.

This shortcut method creates an array containing values helpful in generating 'Previous' and
'Next' links in a view.

1. $conditions = array('Article.status' => 'published');
2. $field = array('date', 'id');
3. $value = '2008403424';
4. $this4>Article4>findNeighbours($conditions, $field, $value));

1. class ImagesController extends AppController {
2. function view($id) {
3. // Say we want to be able to show the image...
4. $this4>set('image', $this4>Image4>findById($id);
5. // But we also want links to the previous and next images...
6. $this4>set(
7. 'neighbors',
8. $this4>Image4>findNeighbours(null, 'id', $id);
9.)
10. }
11. }

The method determines which data rows to return based on the values submitted in the $field
and $value parameters. Further refinement can be done with the $conditions parameter.

For example, if you call the function like this:

The resulting array will contain values for the 'date' and 'id' fields from the articles who
have a status of "published", and whose dates are just before and after the date
'2008403424'.

Array
(
 [prev] => Array ([Article] =>
 Array ([date] => 2008403420, [id] => 99)
),
 [next] => Array ([Article] =>
 Array([date] => 2008403427, [id] => 15)
)
);

Note that the comparison was made on date field, and that the id values were not used to
determine neighboring data.

This method can also be called with the $field value being a single string. When an array is
used, the first field listed will be the field used in the comparison query.

This gives us the full $image['Image'] array, along with $neighbors['prev']
['Image']['id'] and $neighbors['next']['Image']['id'] for use in the view.

3.7.3.6 query

query(string $query)

SQL calls that you can't or don't want to make via other model methods (careful � there are very
few circumstances this is true) can be made using the model's query()method.

If you’re ever using this method in your application, be sure to check out CakePHP’s Sanitize
library (http://book.cakephp.org/view/153/Data+Sanitization) , which aids in cleaning
up user�provided data from injection and cross�site scripting attacks.

1. $this4>Picture4>query("SELECT * FROM pictures LIMIT 2;");

1. Array
2. (
3. [0] => Array
4. (
5. [pictures] => Array
6. (
7. [id] => 1304
8. [user_id] => 759
9.)
10.)
11. [1] => Array
12. (
13. [pictures] => Array
14. (
15. [id] => 1305
16. [user_id] => 759
17.)
18.)
19.)

1. $this4>Picture4>query("SELECT * FROM pictures AS Picture LIMIT 2;");

1. Array
2. (
3. [0] => Array
4. (
5. [Picture] => Array
6. (
7. [id] => 1304
8. [user_id] => 759
9.)
10.)
11. [1] => Array
12. (
13. [Picture] => Array
14. (
15. [id] => 1305
16. [user_id] => 759
17.)
18.)
19.)

query() does not honour $Model�>cachequeries as its functionality is inherently disjoint
from that of the calling model. To avoid caching calls to query, supply a second argument of
false, ie: query($query, $cachequeries = false)

query() uses the table name in the query as the array key for the returned data, rather than
the model name. For example,

might return

To use the model name as the array key, and get a result consistent with that returned by the
Findmethods, the query can be rewritten:

which returns

1. $this4>Role4>generateList(
2. null,
3. 'role_name ASC',
4. null,
5. '{n}.Role.id',
6. '{n}.Role.role_name'
7.);
8. //This would return something like:
9. array(
10. '1' => 'Head Honcho',
11. '2' => 'Marketing',
12. '3' => 'Department Head',
13. '4' => 'Grunt'
14.);

This syntax and the corresponding array structure is valid for MySQL only. Cake does not
provide any data abstraction when running queries manually, so exact results will vary
between databases.

3.7.3.7 generateList

generateList(string $conditions, string $order, int $limit, string
$keyPath, string $valuePath)

generateList is deprecated and replaced by usage of find('list') (http://

book.cakephp.org/view/449/find) , or find('all') combined with a call to
Set::combine().

This function is a shortcut to getting a list of key/value pairs � especially handy for creating an
HTML select tag from a list of your models. Use the $conditions, $order, and $limit
parameters just as you would for a findAll() request.

If $primaryKey and $displayField have been set in the model, you don’t need to supply the last
two parameters, as they act as $keyPath and $keyValue, respectively. Additionally, if neither $
keyPath nor $displayField have been supplied, CakePHP will try to load the information using
‘title’ or ‘name’.

The $keyPath and $valuePath specify where to find the keys and values for your generated list.
For example, if you wanted to generate a list of roles based on your Role model, keyed by their
integer ids, the full call might look something like:

Many people are a little bewildered by the ‘{n}’ syntax used by generateList(). Fret not, for it
serves as a place holder for switching between model DataSources, covered later on in this
chapter.

3.7.3.8 findCount

findCount(string $conditions, int $recursive)

This method has been deprecated, use find('count') (http://book.cakephp.org/view/449/
find) .

1. $model4>id = 22;
2. echo $model4>field('name'); // echo the name for row id 22
3. echo $model4>field('name', array('created <' => date('Y4m4d H:i:s')),
'created DESC'); // echo the name of the last created instance

1. function beforeDelete($cascade) {
2. ...
3. $rating = $this4>read('rating'); // gets the rating of the record
being deleted.
4. $name = $this4>read('name', $id2); // gets the name of a second
record.
5. $rating = $this4>read('rating'); // gets the rating of the second
record.
6. $this4>id = $id3; //
7. $this4>Article4>read(); // reads a third record
8. $record = $this4>data // stores the third record in $record
9. ...
10. }

Returns the number of records that match the given conditions. Use the $recursive parameter
to have CakePHP fetch more (or fewer) levels of associated models.

3.7.3.9 field

field(string $name, array $conditions = null, string $order = null)

Returns the value of a single field, specified as $name, from the first recordmatched by $
conditions as ordered by $order. If no conditions are passed and the model id is set, will return
the field value for the current model result. If no matching record is found returns false.

3.7.3.10 read()

read($fields, $id)

read() is a method used to set the current model data (Model::$data)��such as during
edits��but it can also be used in other circumstances to retrieve a single record from the
database.

$fields is used to pass a single field name, as a string, or an array of field names; if left
empty, all fields will be fetched.

$id specifies the ID of the record to be read. By default, the currently selected record, as
specified by Model::$id, is used. Passing a different value to $id will cause that record to be
selected.

Notice that the third call to read() fetches the rating of the same record read before. That is
because read() changes Model::$id to any value passed as $id. Lines 6�8 demonstrate
how read() changes the current model data.

3.7.3.11 Complex Find Conditions

1. $conditions = array("Post.title" => "This is a post");
2. //Example usage with a model:
3. $this4>Post4>find($conditions);

1. array("Post.title <>" => "This is a post")

1. array(
2. "Post.title" => array("First post", "Second post", "Third post")
3.)

1. array(
2. "NOT" => array("Post.title" => array("First post", "Second post",
"Third post"))
3.)

1. array (
2. "Post.title" => array("First post", "Second post", "Third post"),
3. "Post.created >" => date('Y4m4d', strtotime("42 weeks"))
4.)

1. array("Post.created = Post.modified")

Most of the model's find calls involve passing sets of conditions in one way or another. The
simplest approach to this is to use a WHERE clause snippet of SQL. If you find yourself
needing more control, you can use arrays.

Using arrays is clearer and easier to read, and also makes it very easy to build queries. This
syntax also breaks out the elements of your query (fields, values, operators, etc.) into discrete,
manipulatable parts. This allows CakePHP to generate the most efficient query possible,
ensure proper SQL syntax, and properly escape each individual part of the query.

At it's most basic, an array�based query looks like this:

The structure here is fairly self�explanatory: it will find any post where the title equals "This is
a post". Note that we could have used just "title" as the field name, but when building queries, it
is good practice to always specify the model name, as it improves the clarity of the code, and
helps prevent collisions in the future, should you choose to change your schema.

What about other types of matches? These are equally simple. Let's say we wanted to find all
the posts where the title is not "This is a post":

Notice the '<>' that follows the field name. CakePHP can parse out any valid SQL comparison
operator, including match expressions using LIKE, BETWEEN, or REGEX, as long as you
leave a space between field name and the operator. The one exception here is IN (...)�style
matches. Let's say you wanted to find posts where the title was in a given set of values:

To do a NOT IN(...) match to find posts where the title is not in the given set of values:

Adding additional filters to the conditions is as simple as adding additional key/value pairs to
the array:

You can also create finds that compare two fields in the database

This above example will return posts where the created date is equal to the modified date (ie it
will return posts that have never been modified).

Remember that if you find yourself unable to form a WHERE clause in this method (ex.
boolean operations), you can always specify it as a string like:

1. array(
2. 'Model.field & 8 = 1',
3. //other conditions as usual
4.)

1. array("or" => array (
2. "Post.title" => array("First post", "Second post", "Third post"),
3. "Post.created >" => date('Y4m4d', strtotime("42 weeks"))
4.)
5.)

1. array (
2. "Author.name" => "Bob",
3. "or" => array (
4. "Post.title LIKE" => "%magic%",
5. "Post.created >" => date('Y4m4d', strtotime("42 weeks"))
6.)
7.)

1. array ("not" => array (
2. "Post.title" => null
3.)
4.)

1. array('Post.id BETWEEN ? AND ?' => array(1,10))

1. array('fields'=>array('Product.type','MIN(Product.price) as price'),
'group' => 'Product.type');

1. array('fields'=>array('DISTINCT (User.name) AS my_column_name'),
'order'=>array('User.id DESC'));

By default, CakePHP joins multiple conditions with boolean AND; which means, the snippet
above would only match posts that have been created in the past two weeks, and have a title
that matches one in the given set. However, we could just as easily find posts that match either
condition:

Cake accepts all valid SQL boolean operations, including AND, OR, NOT, XOR, etc., and they
can be upper or lower case, whichever you prefer. These conditions are also infinitely nest�
able. Let's say you had a belongsTo relationship between Posts and Authors. Let's say you
wanted to find all the posts that contained a certain keyword (“magic”) or were created in the
past two weeks, but you want to restrict your search to posts written by Bob:

Cake can also check for null fields. In this example, the query will return records where the
post title is not null:

To handle BETWEEN queries, you can use the following:

Note: CakePHP will quote the numeric values depending on the field type in your DB.

How about GROUP BY?

A quick example of doing a DISTINCT query. You can use other operators, such as MIN(),
MAX(), etc., in a similar fashion

You can create very complex conditions, by nesting multiple condition arrays:

1. array(
2. 'OR' => array(
3. array('Company.name' => 'Future Holdings'),
4. array('Company.name' => 'Steel Mega Works')
5.),
6. 'AND' => array(
7. array(
8. 'OR'=>array(
9. array('Company.status' => 'active'),
10. 'NOT'=>array(
11. array('Company.status'=> array('inactive', 'suspended'))
12.)
13.)
14.)
15.)
16.);

1. SELECT `Company`.`id`, `Company`.`name`,
2. `Company`.`description`, `Company`.`location`,
3. `Company`.`created`, `Company`.`status`, `Company`.`size`
4. FROM
5. `companies` AS `Company`
6. WHERE
7. ((`Company`.`name` = 'Future Holdings')
8. OR
9. (`Company`.`name` = 'Steel Mega Works'))
10. AND
11. ((`Company`.`status` = 'active')
12. OR (NOT (`Company`.`status` IN ('inactive', 'suspended'))))

Which produces the following SQL:

3.7.4 Saving Your Data

CakePHP makes saving model data a snap. Data ready to be saved should be passed to the
model’s save()method using the following basic format:

Array
(
 [ModelName] => Array
 (
 [fieldname1] => 'value'
 [fieldname2] => 'value'
)
)

Most of the time you won’t even need to worry about this format: CakePHP's HtmlHelper,
FormHelper, and findmethods all package data in this format. If you're using either of the
helpers, the data is also conveniently available in $this4>data for quick usage.

Here's a quick example of a controller action that uses a CakePHP model to save data to a
database table:

1. function edit($id) {
2. //Has any form data been POSTed?
3. if(!empty($this4>data)) {
4. //If the form data can be validated and saved...
5. if($this4>Recipe4>save($this4>data)) {
6. //Set a session flash message and redirect.
7. $this4>Session4>setFlash("Recipe Saved!");
8. $this4>redirect('/recipes');
9. }
10. }
11.
12. //If no form data, find the recipe to be edited
13. //and hand it to the view.
14. $this4>set('recipe', $this4>Recipe4>findById($id));
15. }

1. $this4>Post4>read(null, 1);
2. $this4>Post4>set('title', 'New title for the article');
3. $this4>Post4>save();

1. $this4>Post4>read(null, 1);
2. $this4>Post4>set(array(
3. 'title' => 'New title',
4. 'published' => false
5.));
6. $this4>Post4>save();

One additional note: when save is called, the data passed to it in the first parameter is validated
using CakePHP validation mechanism (see the Data Validation chapter for more information).
If for some reason your data isn't saving, be sure to check to see if some validation rules aren't
being broken.

There are a few other save�related methods in the model that you'll find useful:

set($one, $two = null)

Model::set() can be used to set one or many fields of data to the data array inside a model. This
is useful when using models with the ActiveRecord features offered byModel.

Is an example of how you can use set() to update and save single fields, in an ActiveRecord
approach. You can also use set() to assign new values to multiple fields.

The above would update the title and published fields and save them to the database.

save(array $data = null, boolean $validate = true, array $fieldList
= array())

Featured above, this method saves array�formatted data. The second parameter allows you to
sidestep validation, and the third allows you to supply a list of model fields to be saved. For
added security, you can limit the saved fields to those listed in $fieldList.

If $fieldList is not supplied, a malicious user can add additional fields to the form data,
and by this change fields that were not originally intended to be changed.

The save method also has an alternate syntax:

save(array $data = null, array $params = array())

1. array(
2. 'validate' => true,
3. 'fieldList' => array(),
4. 'callbacks' => true //other possible values are false, 'before',
'after'
5.)

1. $this4>Ingredient4>save($newData);
2. $newIngredientId = $this4>Ingredient4>id;

1. //Create: id isn't set or is null
2. $this4>Recipe4>create();
3. $this4>Recipe4>save($this4>data);
4. //Update: id is set to a numerical value
5. $this4>Recipe4>id = 2;
6. $this4>Recipe4>save($this4>data);

1. $this4>Post4>saveField('title', 'A New Title for a New Day');

$params array can have any of the following available options as keys:

More information about model callbacks is available here (http://book.cakephp.org/
view/76/Callback+Methods)

Once a save has been completed, the ID for the object can be found in the $id attribute of the
model object � something especially handy when creating new objects.

Creating or updating is controlled by the model's id field. If $Model4>id is set, the record
with this primary key is updated. Otherwise a new record is created.

When calling save in a loop, don't forget to call create().

create(array $data = array())

This method resets the model state for saving new information.

If the $data parameter (using the array format outlined above) is passed, the model instance
will be ready to save with that data (accessible at $this4>data).

If false is passed instead of an array, the model instance will not initialize fields from the
model schema that are not already set, it will only reset fields that have already been set, and
leave the rest unset. Use this to avoid updating fields in the database that were already set and
are intended to be updated.

saveField(string $fieldName, string $fieldValue, $validate = false)

Used to save a single field value. Set the ID of the model ($this4>ModelName4>id = $id)
just before calling saveField(). When using this method, $fieldName should only
contain the name of the field, not the name of the model and field.

For example, to update the title of a blog post, the call to saveField from a controller might
look something like this:

updateAll(array $fields, array $conditions)

Updates many records in a single call. Records to be updated are identified by the $
conditions array, and fields to be updated, along with their values, are identified by the $
fields array.

1. $this_year = date('Y4m4d h:i:s', strtotime('41 year'));
2. $this4>Baker4>updateAll(
3. array('Baker.approved' => true),
4. array('Baker.created <=' => "$this_year")
5.);

1. $this4>Ticket4>updateAll(
2. array('Ticket.status' => "'closed'"),
3. array('Ticket.customer_id' => 453)
4.);

1. $this4>Article4>saveAll($data['Article']);

For example, to approve all bakers who have been members for over a year, the update call
might look something like:

The $fields array accepts SQL expressions. Literal values should be quotedmanually.

For example, to close all tickets that belong to a certain customer:

saveAll(array $data = null, array $options = array())

Used to save (a) multiple individual records for a single model or (b) this record, as well as all
associated records

The following options may be used:

validate: Set to false to disable validation, true to validate each record before saving, 'first' to
validate *all* records before any are saved, or 'only' to only validate the records, but not save
them.

atomic: If true (default), will attempt to save all records in a single transaction. Should be set to
false if database/table does not support transactions. If false, we return an array similar to the
$data array passed, but values are set to true/false depending on whether each record saved
successfully.

fieldList: Equivalent to the $fieldList parameter in Model::save()

For saving multiple records of single model, $data needs to be a numerically indexed array of
records like this:

Array
(
 [Article] => Array(
 [0] => Array

 (
 [title] => title 1
)

 [1] => Array
 (

 [title] => title 2
)
)
)

The command for saving the above $data array would look like this:

1. $this4>Article4>saveAll($data);

1. $this4>Article4>saveAll($data);

For saving a record along with its related record having a hasOne or belongsTo association,
the data array should be like this:

Array
(
 [User] => Array
 (
 [username] => billy
)
 [Profile] => Array
 (
 [sex] => Male

 [occupation] => Programmer
)
)

The command for saving the above $data array would look like this:

For saving a record along with its related records having hasMany association, the data array
should be like this:

Array
(
 [Article] => Array
 (
 [title] => My first article
)
 [Comment] => Array
 (
 [0] => Array
 (
 [comment] => Comment 1

 [user_id] => 1
)

 [1] => Array
 (
 [comment] => Comment 2

 [user_id] => 2
)
)
)

The command for saving the above $data array would look like this:

Saving related data with saveAll() will only work for directly associated models.

3.7.4.1 Saving Related Model Data (hasOne, hasMany, belongsTo)

1. <?php
2. function add() {
3. if (!empty($this4>data)) {
4. // We can save the User data:
5. // it should be in $this4>data['User']
6.
7. $user = $this4>User4>save($this4>data);
8. // If the user was saved, Now we add this information to the
data
9. // and save the Profile.
10.
11. if (!empty($user)) {
12. // The ID of the newly created user has been set
13. // as $this4>User4>id.
14. $this4>data['Profile']['user_id'] = $this4>User4>id;
15. // Because our User hasOne Profile, we can access
16. // the Profile model through the User model:
17. $this4>User4>Profile4>save($this4>data);
18. }
19. }
20. }
21. ?>

When working with associated models, it is important to realize that saving model data should
always be done by the corresponding CakePHP model. If you are saving a new Post and its
associated Comments, then you would use both Post and Commentmodels during the save
operation.

If neither of the associated model records exists in the system yet (for example, you want to
save a new User and their related Profile records at the same time), you'll need to first save the
primary, or parent model.

To get an idea of how this works, let's imagine that we have an action in our UsersController
that handles the saving of a new User and a related Profile. The example action shown below
will assume that you've POSTed enough data (using the FormHelper) to create a single User
and a single Profile.

As a rule, when working with hasOne, hasMany, and belongsTo associations, its all about
keying. The basic idea is to get the key from one model and place it in the foreign key field on
the other. Sometimes this might involve using the $id attribute of the model class after a save
(), but other times it might just involve gathering the ID from a hidden input on a form that’s
just been POSTed to a controller action.

To supplement the basic approach used above, CakePHP also offers a very handy method
saveAll(), which allows you to validate and save multiple models in one shot. In addtion,
saveAll() provides transactional support to ensure data integrity in your database (i.e. if one
model fails to save, the other models will not be saved either).

For transactions to work correctly in MySQL your tables must use InnoDB engine. Remember
that MyISAM tables do not support transactions.

Let's see how we can use saveAll() to save Company and Account models at the same time.

First, you need to build your form for both Company and Account models (we'll assume that
Company hasMany Account).

1. echo $form4>create('Company', array('action'=>'add'));
2. echo $form4>input('Company.name', array('label'=>'Company name'));
3. echo $form4>input('Company.description');
4. echo $form4>input('Company.location');
5. echo $form4>input('Account.0.name', array('label'=>'Account name'));
6. echo $form4>input('Account.0.username');
7. echo $form4>input('Account.0.email');
8. echo $form4>end('Add');

1. function add() {
2. if(!empty($this4>data)) {
3. $this4>Company4>saveAll($this4>data, array('validate'=>'first'));
4. }
5. }

1. my_model_count

Take a look at the way we named the form fields for the Account model. If Company is our main
model saveAll() will expect the related model's (Account) data to arrive in a specific format.
And having Account.0.fieldName is exactly what we need.

The above field naming is required for a hasMany association. If the association between the
models is hasOne, you have to use ModelName.fieldName notation for the associated model.

Now, in our companies_controller we can create an add() action:

That's all there is to it. Now our Company and Account models will be validated and saved all
at the same time. A quick thing to point out here is the use of array
('validate'=>'first'); this option will ensure that both of our models are validated.

3.7.4.1.1 counterCache , Cache your count()

This function helps you cache the count of related data. Instead of counting the records
manually via find('count'), the model itself tracks any addition/deleting towards the
associated $hasManymodel and increases/decreases a dedicated integer field within the
parent model table.

The name of the field consists of the singular model name followed by a underscore and the
word "count".

Let's say you have a model called ImageComment and a model called Image, you would add a
new INT�field to the image_comments table and name it image_count.

Here are some more examples:

Model Associated Model Example

User Image users.image_count

Image ImageComment image.image_comment_count

BlogEntry BlogEntryComment blog_entries.blog_entry_comment_count

Once you have added the counter field you are good to go. Activate counter�cache in your
association by adding a counterCache key and set the value to true.

1. class Image extends AppModel {
2. var $belongsTo = array(
3. 'ImageAlbum' => array('counterCache' => true)
4.);
5. }

1. class Image extends AppModel {
2. var $belongsTo = array(
3. 'ImageAlbum' => array(
4. 'counterCache' => true,
5. 'counterScope' => array('active' => 1) // only count if
"Image" is active = 1
6.));
7. }

1. <?php echo $form4>create('Tag');?>
2. <?php echo $form4>input(
3. 'Recipe.id',
4. array('type'=>'hidden', 'value' => $recipe_id)); ?>
5. <?php echo $form4>input('Tag.name'); ?>
6. <?php echo $form4>end('Add Tag'); ?>

1. function add() {
2.
3. //Save the association
4. if ($this4>Tag4>save($this4>data)) {
5. //do something on success
6. }
7. }

From now on, every time you add or remove a Image associated to ImageAlbum, the number
within image_count is adjusted automatically.

You can also specify counterScope. It allows you to specify a simple condition which tells
the model when to update (or when not to, depending on how you look at it) the counter value.

Using our Image model example, we can specify it like so:

3.7.4.2 Saving Related Model Data (HABTM)

Saving models that are associated by hasOne, belongsTo, and hasMany is pretty simple: you
just populate the foreign key field with the ID of the associated model. Once that's done, you
just call the save() method on the model, and everything gets linked up correctly.

With HABTM, you need to set the ID of the associated model in your data array. We'll build a
form that creates a new tag and associates it on the fly with some recipe.

The simplest formmight look something like this (we'll assume that $recipe_id is already set
to something):

In this example, you can see the Recipe.id hidden field whose value is set to the ID of the
recipe we want to link the tag to.

When the save()method is invoked within the controller, it'll automatically save the
HABTM data to the database.

1. // in the controller:
2. $this4>set('tags', $this4>Recipe4>Tag4>find('list'));
3. // in the view:
4. $form4>input('tags');

1. // in the controller:
2. $this4>set('tags', $this4>Recipe4>Tag4>find('list'));
3. // in the view:
4. $form4>input('Tag');

1. Child hasAndBelongsToMany Club

1. Child hasMany Membership
2. Membership belongsTo Child, Club
3. Club hasMany Membership.

With the preceding code, our new Tag is created and associated with a Recipe, whose ID was
set in $this�>data['Recipe']['id'].

Other ways we might want to present our associated data can include a select drop down list.
The data can be pulled from the model using the find('list')method and assigned to a
view variable of the model name. An input with the same name will automatically pull in this
data into a <select>.

A more likely scenario with a HABTM relationship would include a <select> set to allow
multiple selections. For example, a Recipe can have multiple Tags assigned to it. In this case,
the data is pulled out of the model the same way, but the form input is declared slightly
different. The tag name is defined using the ModelName convention.

Using the preceding code, a multiple select drop down is created, allowing for multiple choices
to automatically be saved to the existing Recipe being added or saved to the database.

What to do when HABTM becomes complicated?

By default when saving a HasAndBelongsToMany relationship, Cake will delete all rows on
the join table before saving new ones. For example if you have a Club that has 10 Children
associated. You then update the Club with 2 children. The Club will only have 2 Children, not
12.

Also note that if you want to addmore fields to the join (when it was created or meta
information) this is possible with HABTM join tables, but it is important to understand that
you have an easy option.

HasAndBelongsToMany between two models is in reality shorthand for three models
associated through both a hasMany and a belongsTo association.

Consider this example:

Another way to look at this is adding a Membership model:

These two examples are almost the exact same. They use the same amount and named fields in
the database and the same amount of models. The important differences are that the "join"
model is named differently and it's behavior is more predictable.

3.7.5 Deleting Data

These methods can be used to remove data.

3.7.5.1 delete

delete(int $id = null, boolean $cascade = true);

Deletes the record identified by $id. By default, also deletes records dependent on the record
specified to be deleted.

For example, when deleting a User record that is tied to many Recipe records:

if $cascade is set to true, the related Recipe records are also deleted if the models
dependent�value is set to true.
if $cascade is set to false, the Recipe records will remain after the User has been deleted.

3.7.5.2 remove

remove(int $id = null, boolean $cascade = true);

A synonym for delete().

3.7.5.3 deleteAll

deleteAll(mixed $conditions, $cascade = true, $callbacks = false)

Same as with del() and remove(), except that deleteAll() deletes all records that match
the supplied conditions. The $conditions array should be supplied as an SQL fragment or
array.

3.7.6 Associations: Linking Models Together

One of the most powerful features of CakePHP is the ability to link relational mapping provided
by the model. In CakePHP, the links between models are handled through associations.

Defining relations between different objects in your application should be a natural process.
For example: in a recipe database, a recipe may have many reviews, reviews have a single
author, and authors may have many recipes. Defining the way these relations work allows you
to access your data in an intuitive and powerful way.

The purpose of this section is to show you how to plan for, define, and utilize associations
between models in CakePHP.

While data can come from a variety of sources, the most common form of storage in web
applications is a relational database. Most of what this section covers will be in that context.

For information on associations with Plugin models, see Plugin Models (http://
book.cakephp.org/view/117/Plugin+Models) .

3.7.6.1 Relationship Types

The four association types in CakePHP are: hasOne, hasMany, belongsTo, and
hasAndBelongsToMany (HABTM).

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $hasOne = 'Profile';
5. var $hasMany = array(
6. 'Recipe' => array(
7. 'className' => 'Recipe',
8. 'conditions' => array('Recipe.approved' => '1'),
9. 'order' => 'Recipe.created DESC'
10.)
11.);
12. }
13. ?>

1. $this4>Recipe4>someFunction();

1. $this4>User4>Recipe4>someFunction();

Relationship Association Type Example

one to one hasOne A user has one profile.

one to many hasMany A user can have multiple recipes.

many to one belongsTo Many recipes belong to a user.

many to many hasAndBelongsToMany Recipes have, and belong to many tags.

Associations are defined by creating a class variable named after the association you are
defining. The class variable can sometimes be as simple as a string, but can be as complete as
a multidimensional array used to define association specifics.

In the above example, the first instance of the word 'Recipe' is what is termed an 'Alias'. This is
an identifier for the relationship and can be anything you choose. Usually, you will choose the
same name as the class that it references. However, aliases must be unique both within a
single model and on both sides of a belongsTo/hasMany or a belongsTo/hasOne relationship.
Choosing non�unique names for model aliases can cause unexpected behavior.

Cake will automatically create links between associated model objects. So for example in your
Usermodel you can access the Recipemodel as

Similarly in your controller you can access a associated models simply by following your model
associations and without adding it to the $uses array:

Remember that associations are defined 'one way'. If you define User hasMany Recipe that has
no effect on the Recipe Model. You need to define Recipe belongsTo User to be able to access
the User model from your Recipe model

3.7.6.2 hasOne

Let’s set up a User model with a hasOne relationship to a Profile model.

First, your database tables need to be keyed correctly. For a hasOne relationship to work, one
table has to contain a foreign key that points to a record in the other. In this case the profiles
table will contain a field called user_id. The basic pattern is:

hasOne: the othermodel contains the fore
ign key.

Relation Schema

Apple hasOne Banana bananas.apple_id

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $hasOne = 'Profile';
5. }
6. ?>

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $hasOne = array(
5. 'Profile' => array(
6. 'className' => 'Profile',
7. 'conditions' => array('Profile.published' => '1'),
8. 'dependent' => true
9.)
10.);
11. }
12. ?>

User hasOne Profile profiles.user_id

Doctor hasOne Mentor mentors.doctor_id

The User model file will be saved in /app/models/user.php. To define the ‘User hasOne Profile’
association, add the $hasOne property to the model class. Remember to have a Profile model
in /app/models/profile.php, or the association won’t work.

There are two ways to describe this relationship in your model files. The simplest method is to
set the $hasOne attribute to a string containing the classname of the associated model, as
we’ve done above.

If you needmore control, you can define your associations using array syntax. For example,
youmight want to limit the association to include only certain records.

Possible keys for hasOne association arrays include:

className: the classname of the model being associated to the current model. If you’re
defining a ‘User hasOne Profile’ relationship, the className key should equal ‘Profile.’
foreignKey: the name of the foreign key found in the other model. This is especially
handy if you need to define multiple hasOne relationships. The default value for this key
is the underscored, singular name of the current model, suffixed with ‘_id’. In the
example above it would default to 'user_id'.
conditions: An SQL fragment used to filter related model records. It’s good practice to
use model names in SQL fragments: “Profile.approved = 1” is always better than just
“approved = 1.”
fields: A list of fields to be retrieved when the associated model data is fetched. Returns
all fields by default.
order: An SQL fragment that defines the sorting order for the returned associated rows.
dependent: When the dependent key is set to true, and the model’s delete() method is
called with the cascade parameter set to true, associated model records are also deleted.
In this case we set it true so that deleting a User will also delete her associated Profile.

Once this association has been defined, find operations on the User model will also fetch a
related Profile record if it exists:

//Sample results from a $this4>User4>find() call.

1. <?php
2. class Profile extends AppModel {
3. var $name = 'Profile';
4. var $belongsTo = 'User';
5. }
6. ?>

Array
(
 [User] => Array
 (
 [id] => 121
 [name] => Gwoo the Kungwoo
 [created] => 2007405401 10:31:01
)
 [Profile] => Array
 (
 [id] => 12
 [user_id] => 121
 [skill] => Baking Cakes
 [created] => 2007405401 10:31:01
)
)

3.7.6.3 belongsTo

Now that we have Profile data access from the User model, let’s define a belongsTo association
in the Profile model in order to get access to related User data. The belongsTo association is a
natural complement to the hasOne and hasMany associations: it allows us to see the data from
the other direction.

When keying your database tables for a belongsTo relationship, follow this convention:

belongsTo: the current model contains the f
oreign key.

Relation Schema

Banana belongsTo Apple bananas.apple_id

Profile belongsTo User profiles.user_id

Mentor belongsTo Doctor mentors.doctor_id

If a model(table) contains a foreign key, it belongsTo the other model(table).

We can define the belongsTo association in our Profile model at /app/models/profile.php
using the string syntax as follows:

We can also define a more specific relationship using array syntax:

1. <?php
2. class Profile extends AppModel {
3. var $name = 'Profile';
4. var $belongsTo = array(
5. 'User' => array(
6. 'className' => 'User',
7. 'foreignKey' => 'user_id'
8.)
9.);
10. }
11. ?>

Possible keys for belongsTo association arrays include:

className: the classname of the model being associated to the current model. If you’re
defining a ‘Profile belongsTo User’ relationship, the className key should equal ‘User.’
foreignKey: the name of the foreign key found in the current model. This is especially
handy if you need to define multiple belongsTo relationships. The default value for this
key is the underscored, singular name of the other model, suffixed with ‘_id’.
conditions: An SQL fragment used to filter related model records. It’s good practice to
use model names in SQL fragments: “User.active = 1” is always better than just “active =
1.”
fields: A list of fields to be retrieved when the associated model data is fetched. Returns
all fields by default.
order: An SQL fragment that defines the sorting order for the returned associated rows.
counterCache: If set to true the associatedModel will automatically increase or
decrease the “[singular_model_name]_count” field in the foreign table whenever you do
a save() or delete(). If its a string then its the field name to use. The value in the counter
field represents the number of related rows.
counterScope: Optional conditions array to use for updating counter cache field.

Once this association has been defined, find operations on the Profile model will also fetch a
related User record if it exists:

//Sample results from a $this4>Profile4>find() call.

Array
(
 [Profile] => Array
 (
 [id] => 12
 [user_id] => 121
 [skill] => Baking Cakes
 [created] => 2007405401 10:31:01
)
 [User] => Array
 (
 [id] => 121
 [name] => Gwoo the Kungwoo
 [created] => 2007405401 10:31:01
)
)

3.7.6.4 hasMany

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $hasMany = 'Comment';
5. }
6. ?>

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $hasMany = array(
5. 'Comment' => array(
6. 'className' => 'Comment',
7. 'foreignKey' => 'user_id',
8. 'conditions' => array('Comment.status' => '1'),
9. 'order' => 'Comment.created DESC',
10. 'limit' => '5',
11. 'dependent'=> true
12.)
13.);
14. }
15. ?>

Next step: defining a “User hasMany Comment” association. A hasMany association will
allow us to fetch a user’s comments when we fetch a User record.

When keying your database tables for a hasMany relationship, follow this convention:

hasMany: the othermodel contains the fore
ign key.

Relation Schema

User hasMany Comment Comment.user_id

Cake hasMany Virtue Virtue.cake_id

Product hasMany Option Option.product_id

We can define the hasMany association in our User model at /app/models/user.php using the
string syntax as follows:

We can also define a more specific relationship using array syntax:

Possible keys for hasMany association arrays include:

className: the classname of the model being associated to the current model. If you’re
defining a ‘User hasMany Comment’ relationship, the className key should equal
‘Comment.’
foreignKey: the name of the foreign key found in the other model. This is especially
handy if you need to define multiple hasMany relationships. The default value for this
key is the underscored, singular name of the actual model, suffixed with ‘_id’.
conditions: An SQL fragment used to filter related model records. It’s good practice to
use model names in SQL fragments: “Comment.status = 1” is always better than just
“status = 1.”
fields: A list of fields to be retrieved when the associated model data is fetched. Returns
all fields by default.
order: An SQL fragment that defines the sorting order for the returned associated rows.
limit: The maximum number of associated rows you want returned.
offset: The number of associated rows to skip over (given the current conditions and
order) before fetching and associating.

1. SELECT Orange.* from oranges as Orange WHERE Orange.apple_id = {$__
cakeID__$};

dependent: When dependent is set to true, recursive model deletion is possible. In this
example, Comment records will be deleted when their associated User record has been
deleted.
exclusive: When exclusive is set to true, recursive model deletion does the delete with a
deleteAll() call, instead of deleting each entity separately. This greatly improves
performance, but may not be ideal for all circumstances.
finderQuery: A complete SQL query CakePHP can use to fetch associated model
records. This should be used in situations that require very custom results.

If a query you're building requires a reference to the associated model ID, use the special
{$__cakeID__$}marker in the query. For example, if your Apple model hasMany
Orange, the query should look something like this:

Once this association has been defined, find operations on the User model will also fetch
related Comment records if they exist:

//Sample results from a $this4>User4>find() call.

Array
(
 [User] => Array
 (
 [id] => 121
 [name] => Gwoo the Kungwoo
 [created] => 2007405401 10:31:01
)
 [Comment] => Array
 (
 [0] => Array
 (
 [id] => 123
 [user_id] => 121
 [title] => On Gwoo the Kungwoo
 [body] => The Kungwooness is not so Gwooish
 [created] => 2006405401 10:31:01
)
 [1] => Array
 (
 [id] => 124
 [user_id] => 121
 [title] => More on Gwoo
 [body] => But what of the ‘Nut?
 [created] => 2006405401 10:41:01
)
)
)

One thing to remember is that you’ll need a complimentary Comment belongsTo User
association in order to get the data from both directions. What we’ve outlined in this section
empowers you to get Comment data from the User. Adding the Comment belongsTo User

association in the Commentmodel empowers you to get User data from the Commentmodel �
completing the connection and allowing the flow of information from either model’s
perspective.

3.7.6.5 hasAndBelongsToMany (HABTM)

Alright. At this point, you can already call yourself a CakePHP model associations
professional. You're already well versed in the three associations that take up the bulk of object
relations.

Let's tackle the final relationship type: hasAndBelongsToMany, or HABTM. This association
is used when you have two models that need to be joined up, repeatedly, many times, in many
different ways.

The main difference between hasMany and HABTM is that a link between models in HABTM
is not exclusive. For example, we're about to join up our Recipe model with a Tag model using
HABTM. Attaching the "Italian" tag to my grandma's Gnocci recipe doesn't "use up" the tag. I
can also tag my Honey Glazed BBQ Spaghettio's with "Italian" if I want to.

Links between hasMany associated objects are exclusive. If my User hasMany Comments, a
comment is only linked to a specific user. It's no longer up for grabs.

Moving on. We'll need to set up an extra table in the database to handle HABTM associations.
This new join table's name needs to include the names of both models involved, in alphabetical
order, and separated with an underscore (_). The contents of the table should be two fields,
each foreign keys (which should be integers) pointing to both of the primary keys of the
involvedmodels. To avoid any issues � don't define a combined primary key for these two fields,
if your application requires it you can define a unique index. If you plan to add any extra
information to this table, it's a good idea to add an additional primary key field (by convention
'id') to make acting on the table as easy as any other model.

HABTM requires a separate join table that includes both model names.

Relation Schema (HABTM table in bold)

Recipe HABTM Tag recipes_tags.id, recipes_tags.recipe_id, recipes_tags.tag_id

Cake HABTM Fan cakes_fans.id, cakes_fans.cake_id, cakes_fans.fan_id

Foo HABTM Bar bars_foos.id, bars_foos.foo_id, bars_foos.bar_id

Table names are by convention in alphabetical order.

Once this new table has been created, we can define the HABTM association in the model
files. We're gonna skip straight to the array syntax this time:

1. <?php
2. class Recipe extends AppModel {
3. var $name = 'Recipe';
4. var $hasAndBelongsToMany = array(
5. 'Tag' =>
6. array(
7. 'className' => 'Tag',
8. 'joinTable' => 'recipes_tags',
9. 'foreignKey' => 'recipe_id',
10. 'associationForeignKey' => 'tag_id',
11. 'unique' => true,
12. 'conditions' => '',
13. 'fields' => '',
14. 'order' => '',
15. 'limit' => '',
16. 'offset' => '',
17. 'finderQuery' => '',
18. 'deleteQuery' => '',
19. 'insertQuery' => ''
20.)
21.);
22. }
23. ?>

Possible keys for HABTM association arrays include:

className: the classname of the model being associated to the current model. If you're
defining a ‘Recipe HABTM Tag' relationship, the className key should equal ‘Tag.'
joinTable: The name of the join table used in this association (if the current table
doesn't adhere to the naming convention for HABTM join tables).
with: Defines the name of the model for the join table. By default CakePHP will auto�
create a model for you. Using the example above it would be called RecipesTag. By using
this key you can override this default name. The join table model can be used just like
any "regular" model to access the join table directly.
foreignKey: the name of the foreign key found in the current model. This is especially
handy if you need to define multiple HABTM relationships. The default value for this
key is the underscored, singular name of the current model, suffixed with ‘_id'.
associationForeignKey: the name of the foreign key found in the other model. This
is especially handy if you need to define multiple HABTM relationships. The default
value for this key is the underscored, singular name of the other model, suffixed with ‘_
id'.
unique: If true (default value) cake will first delete existing relationship records in the
foreign keys table before inserting new ones, when updating a record. So existing
associations need to be passed again when updating.
conditions: An SQL fragment used to filter related model records. It's good practice to
use model names in SQL fragments: "Comment.status = 1" is always better than just
"status = 1."
fields: A list of fields to be retrieved when the associated model data is fetched. Returns
all fields by default.
order: An SQL fragment that defines the sorting order for the returned associated rows.
limit: The maximum number of associated rows you want returned.
offset: The number of associated rows to skip over (given the current conditions and
order) before fetching and associating.
finderQuery, deleteQuery, insertQuery: A complete SQL query CakePHP can use
to fetch, delete, or create new associated model records. This should be used in
situations that require very custom results.

1. $this4>Recipe4>bindModel(array(
2. 'hasAndBelongsToMany' => array(
3. 'Tag' => array('conditions'=>array('Tag.name'=>'Dessert'))
4.)));
5. $this4>Recipe4>find('all');

Once this association has been defined, find operations on the Recipe model will also fetch
related Tag records if they exist:

//Sample results from a $this4>Recipe4>find() call.

Array
(
 [Recipe] => Array
 (
 [id] => 2745
 [name] => Chocolate Frosted Sugar Bombs
 [created] => 2007405401 10:31:01
 [user_id] => 2346
)
 [Tag] => Array
 (
 [0] => Array
 (
 [id] => 123
 [name] => Breakfast
)
 [1] => Array
 (
 [id] => 124
 [name] => Dessert
)
 [2] => Array
 (
 [id] => 125
 [name] => Heart Disease
)
)
)

Remember to define a HABTM association in the Tag model if you'd like to fetch Recipe data
when using the Tag model.

It is also possible to execute custom find queries based on HABTM relationships. Consider the
following examples:

Assuming the same structure in the above example (Recipe HABTM Tag), let's say we want to
fetch all Recipes with the tag 'Dessert', one potential (wrong) way to achieve this would be to
apply a condition to the association itself:

//Data Returned
Array
(
 0 => Array
 {

1. $this4>Recipe4>Tag4>find('all', array('conditions'=>array
('Tag.name'=>'Dessert')));

1. $this4>Recipe4>bindModel(array('hasOne' => array('RecipesTag')));
2. $this4>Recipe4>find('all', array(
3. 'fields' => array('Recipe.*'),
4. 'conditions'=>array('RecipesTag.tag_id'=>124) // id of Dessert
5.));

 [Recipe] => Array
 (
 [id] => 2745
 [name] => Chocolate Frosted Sugar Bombs
 [created] => 2007405401 10:31:01
 [user_id] => 2346
)
 [Tag] => Array
 (
 [0] => Array
 (
 [id] => 124
 [name] => Dessert
)
)
)
 1 => Array
 {
 [Recipe] => Array
 (
 [id] => 2745
 [name] => Crab Cakes
 [created] => 2008405401 10:31:01
 [user_id] => 2349
)
 [Tag] => Array
 (
 }
 }
}

Notice that this example returns ALL recipes but only the "Dessert" tags. To properly achieve
our goal, there are a number of ways to do it. One option is to search the Tag model (instead of
Recipe), which will also give us all of the associated Recipes.

We could also use the join table model (which CakePHP provides for us), to search for a given
ID.

It's also possible to create an exotic association for the purpose of creating as many joins as
necessary to allow filtering, for example:

1. $this4>Recipe4>bindModel(array(
2. 'hasOne' => array(
3. 'RecipesTag',
4. 'FilterTag' => array(
5. 'className' => 'Tag',
6. 'foreignKey' => false,
7. 'conditions' => array('FilterTag.id = RecipesTag.tag_id')
8.))));
9. $this4>Recipe4>find('all', array(
10. 'fields' => array('Recipe.*'),
11. 'conditions'=>array('FilterTag.name'=>'Dessert')
12.));

Both of which will return the following data:

//Data Returned
Array
(
 0 => Array
 {
 [Recipe] => Array
 (
 [id] => 2745
 [name] => Chocolate Frosted Sugar Bombs
 [created] => 2007405401 10:31:01
 [user_id] => 2346
)
 [Tag] => Array
 (
 [0] => Array
 (
 [id] => 123
 [name] => Breakfast
)
 [1] => Array
 (
 [id] => 124
 [name] => Dessert
)
 [2] => Array
 (
 [id] => 125
 [name] => Heart Disease
)
)
}

The same binding trick can be used to easily paginate your HABTMmodels. Just one word of
caution: since paginate requires two queries (one to count the records and one to get the actual
data), be sure to supply the false parameter to your bindModel(); which essentially tells
CakePHP to keep the binding persistent over multiple queries, rather than just one as in the
default behavior. Please refer to the API for more details.

1. <?php
2. class Leader extends AppModel {
3. var $name = 'Leader';
4.
5. var $hasMany = array(
6. 'Follower' => array(
7. 'className' => 'Follower',
8. 'order' => 'Follower.rank'
9.)
10.);
11. }
12. ?>
13.
14. <?php
15. class Follower extends AppModel {
16. var $name = 'Follower';
17. }
18. ?>

For more information on binding model associations on the fly see Creating and
destroying associations on the fly (http://book.cakephp.org/view/86/creating+and+
destroying+associations+on+the+fly)

Mix andmatch techniques to achieve your specific objective.

3.7.6.6 Creating and Destroying Associations on the Fly

Sometimes it becomes necessary to create and destroy model associations on the fly. This may
be for any number of reasons:

You want to reduce the amount of associated data fetched, but all your associations are
on the first level of recursion.
You want to change the way an association is defined in order to sort or filter associated
data.

This association creation and destruction is done using the CakePHP model bindModel() and
unbindModel() methods. (There is also a very helpful behavior called "Containable", please
refer to manual section about Built�in behaviors for more information). Let's set up a few
models so we can see how bindModel() and unbindModel() work. We'll start with two models:

Now, in the LeadersController, we can use the find() method in the Leader model to fetch a
Leader and its associated followers. As you can see above, the association array in the Leader
model defines a "Leader hasMany Followers" relationship. For demonstration purposes, let's
use unbindModel() to remove that association in a controller action.

1. function someAction() {
2. // This fetches Leaders, and their associated Followers
3. $this4>Leader4>find('all');
4.
5. // Let's remove the hasMany...
6. $this4>Leader4>unbindModel(
7. array('hasMany' => array('Follower'))
8.);
9.
10. // Now using a find function will return
11. // Leaders, with no Followers
12. $this4>Leader4>find('all');
13.
14. // NOTE: unbindModel only affects the very next
15. // find function. An additional find call will use
16. // the configured association information.
17.
18. // We've already used find('all') after unbindModel(),
19. // so this will fetch Leaders with associated
20. // Followers once again...
21. $this4>Leader4>find('all');
22. }

1. $this4>Model4>unbindModel(
2. array('associationType' => array('associatedModelClassName'))
3.);

Removing or adding associations using bind� and unbindModel() only works for the next
model operation only unless the second parameter has been set to false. If the second
parameter has been set to false, the bind remains in place for the remainder of the request.

Here’s the basic usage pattern for unbindModel():

Now that we've successfully removed an association on the fly, let's add one. Our as�of�yet
unprincipled Leader needs some associated Principles. The model file for our Principle model
is bare, except for the var $name statement. Let's associate some Principles to our Leader on
the fly (but remember–only for just the following find operation). This function appears in the
LeadersController:

1. function anotherAction() {
2. // There is no Leader hasMany Principles in
3. // the leader.php model file, so a find here,
4. // only fetches Leaders.
5. $this4>Leader4>find('all');
6.
7. // Let's use bindModel() to add a new association
8. // to the Leader model:
9. $this4>Leader4>bindModel(
10. array('hasMany' => array(
11. 'Principle' => array(
12. 'className' => 'Principle'
13.)
14.)
15.)
16.);
17.
18. // Now that we're associated correctly,
19. // we can use a single find function to fetch
20. // Leaders with their associated principles:
21. $this4>Leader4>find('all');
22. }

1. $this4>Model4>bindModel(
2. array('associationName' => array(
3. 'associatedModelClassName' => array(
4. // normal association keys go here...
5.)
6.)
7.)
8.);

There you have it. The basic usage for bindModel() is the encapsulation of a normal
association array inside an array whose key is named after the type of association you are
trying to create:

Even though the newly boundmodel doesn't need any sort of association definition in its
model file, it will still need to be correctly keyed in order for the new association to work
properly.

3.7.6.7 Multiple relations to the same model

There are cases where a Model has more then one relation to another Model. For example you
might have a Message model that has two relations to the User model. One relation to the user
that sends a message, and a second to the user that receives the message. The messages table
will have a field user_id, but also a field recipient_id. Now your Message model can look
something like:

1. <?php
2. class Message extends AppModel {
3. var $name = 'Message';
4. var $belongsTo = array(
5. 'Sender' => array(
6. 'className' => 'User',
7. 'foreignKey' => 'user_id'
8.),
9. 'Recipient' => array(
10. 'className' => 'User',
11. 'foreignKey' => 'recipient_id'
12.)
13.);
14. }
15. ?>

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $hasMany = array(
5. 'MessageSent' => array(
6. 'className' => 'Message',
7. 'foreignKey' => 'user_id'
8.),
9. 'MessageReceived' => array(
10. 'className' => 'Message',
11. 'foreignKey' => 'recipient_id'
12.)
13.);
14. }
15. ?>

Recipient is an alias for the User model. Now let's see what the User model would look like.

3.7.7 Callback Methods

If you want to sneak in some logic just before or after a CakePHP model operation, use model
callbacks. These functions can be defined in model classes (including your AppModel) class.
Be sure to note the expected return values for each of these special functions.

3.7.7.1 beforeFind

beforeFind(mixed $queryData)

Called before any find�related operation. The $queryData passed to this callback contains
information about the current query: conditions, fields, etc.

If you do not wish the find operation to begin (possibly based on a decision relating to the $
queryData options), return false. Otherwise, return the possibly modified $queryData, or
anything you want to get passed to find and its counterparts.

Youmight use this callback to restrict find operations based on a user’s role, or make caching
decisions based on the current load.

1. $results = array(
2. 0 => array(
3. 'ModelName' => array(
4. 'field1' => 'value1',
5. 'field2' => 'value2',
6.),
7.),
8.);

1. $results = array(
2. 'field_1' => 'value1',
3. 'field_2' => 'value2'
4.);

1. function afterFind($results) {
2. foreach ($results as $key => $val) {
3. if (isset($val['Event']['begindate'])) {
4. $results[$key]['Event']['begindate'] = $this4
>dateFormatAfterFind($val['Event']['begindate']);
5. }
6. }
7. return $results;
8. }
9. function dateFormatAfterFind($dateString) {
10. return date('d4m4Y', strtotime($dateString));
11. }

3.7.7.2 afterFind

afterFind(array $results, bool $primary)

Use this callback to modify results that have been returned from a find operation, or to perform
any other post�find logic. The $results parameter passed to this callback contains the returned
results from the model's find operation, i.e. something like:

The return value for this callback should be the (possibly modified) results for the find
operation that triggered this callback.

If $primary is false, the format of $results will be a little different than one might expect;
instead of the result you would normally get from a find operation, you will get this:

Code expecting $primary to be true will probably get a "Cannot use string offset as an array"
fatal error from PHP if a recursive find is used.

Below is an example of how afterfind can be used for date formating.

3.7.7.3 beforeValidate

beforeValidate()

Use this callback to modify model data before it is validated, or to modify validation rules if
required. This function must also return true, otherwise the current save() execution will abort.

1. function beforeSave() {
2. if(!empty($this4>data['Event']['begindate']) && !empty($this4>data
['Event']['enddate'])) {
3. $this4>data['Event']['begindate'] = $this4
>dateFormatBeforeSave($this4>data['Event']['begindate']);
4. $this4>data['Event']['enddate'] = $this4>dateFormatBeforeSave
($this4>data['Event']['enddate']);
5. }
6. return true;
7. }
8. function dateFormatBeforeSave($dateString) {
9. return date('Y4m4d', strtotime($dateString)); // Direction is from
10. }

3.7.7.4 beforeSave

beforeSave()

Place any pre�save logic in this function. This function executes immediately after model data
has been successfully validated, but just before the data is saved. This function should also
return true if you want the save operation to continue.

This callback is especially handy for any data�massaging logic that needs to happen before
your data is stored. If your storage engine needs dates in a specific format, access it at $this�
>data andmodify it.

Below is an example of how beforeSave can be used for date conversion. The code in the
example is used for an application with a begindate formatted like YYYY�MM�DD in the
database and is displayed like DD�MM�YYYY in the application. Of course this can be changed
very easily. Use the code below in the appropriate model.

Be sure that beforeSave() returns true, or your save is going to fail.

3.7.7.5 afterSave

afterSave(boolean $created)

If you have logic you need to be executed just after every save operation, place it in this callback
method.

The value of $created will be true if a new object was created (rather than an update).

3.7.7.6 beforeDelete

beforeDelete(boolean $cascade)

Place any pre�deletion logic in this function. This function should return true if you want the
deletion to continue, and false if you want to abort.

The value of $cascade will be true if records that depend on this record will also be deleted.

1. class Example extends AppModel {
2. var $useDbConfig = 'alternate';
3. }

1. class Example extends AppModel {
2. var $useTable = false; // This model does not use a database table
3. }

3.7.7.7 afterDelete

afterDelete()

Place any logic that you want to be executed after every deletion in this callback method.

3.7.7.8 onError

onError()

Called if any problems occur.

3.7.8 Model Attributes

Model attributes allow you to set properties that can override the default model behavior.

For a complete list of model attributes and their descriptions visit the CakePHP API. Check out
http://api.cakephp.org/class/model (http://api.cakephp.org/class/model) .

3.7.8.1 useDbConfig

The useDbConfig property is a string that specifies the name of the database connection to
use to bind your model class to the related database table. You can set it to any of the database
connections defined within your database configuration file. The database configuration file is
stored in /app/config/database.php.

The useDbConfig property is defaulted to the 'default' database connection.

Example usage:

3.7.8.2 useTable

The useTable property specifies the database table name. By default, the model uses the
lowercase, plural form of the model's class name. Set this attribute to the name of an alternate
table, or set it to false if you wish the model to use no database table.

Example usage:

Alternatively:

1. class Example extends AppModel {
2. var $useTable = 'exmp'; // This model uses a database table 'exmp'
3. }

1. class Example extends AppModel {
2. var $tablePrefix = 'alternate_'; // will look for 'alternate_examples'
3. }

1. class Example extends AppModel {
2. var $primaryKey = 'example_id'; // example_id is the field name in
the database
3. }

1. class User extends AppModel {
2. var $displayField = 'username';
3. }

3.7.8.3 tablePrefix

The name of the table prefix used for the model. The table prefix is initially set in the database
connection file at /app/config/database.php. The default is no prefix. You can override
the default by setting the tablePrefix attribute in the model.

Example usage:

3.7.8.4 primaryKey

Each table normally has a primary key, id. Youmay change which field name the model uses
as its primary key. This is common when setting CakePHP to use an existing database table.

Example usage:

3.7.8.5 displayField

The displayField attribute specifies which database field should be used as a label for the
record. The label is used in scaffolding and in find('list') calls. The model will use name
or title, by default.

For example, to use the username field:

Multiple field names cannot be combined into a single display field. For example, you cannot
specify, array('first_name', 'last_name') as the display field.

3.7.8.6 recursive

The recursive property defines how deep CakePHP should go to fetch associated model data via
find(), findAll() and read()methods.

1. $order = "field"
2. $order = "Model.field";
3. $order = "Model.field asc";
4. $order = "Model.field ASC";
5. $order = "Model.field DESC";
6. $order = array("Model.field" => "asc", "Model.field2" => "DESC");

Imagine your application features Groups which belong to a domain and have many Users
which in turn have many Articles. You can set $recursive to different values based on the
amount of data you want back from a $this�>Group�>find() call:

Depth Description

�1 Cake fetches Group data only, no joins.

0 Cake fetches Group data and its domain

1 Cake fetches a Group, its domain and its associated Users

2 Cake fetches a Group, its domain, its associated Users, and the Users' associated
Articles

Set it no higher than you need. Having CakePHP fetch data you aren’t going to use slows your
app unnecessarily.

If you want to combine $recursive with the fields functionality, you will have to add the
columns containing the required foreign keys to the fields array manually. In the example
above, this could mean adding domain_id.

3.7.8.7 order

The default ordering of data for any find operation. Possible values include:

3.7.8.8 data

The container for the model’s fetched data. While data returned from a model class is normally
used as returned from a find() call, youmay need to access information stored in $data inside
of model callbacks.

3.7.8.9 _schema

Contains metadata describing the model’s database table fields. Each field is described by:

name
type (integer, string, datetime, etc.)
null
default value
length

3.7.8.10 validate

1. class Example extends AppModel {
2. var $name = 'Example';
3. }

1. class Example extends AppModel {
2. function getRecent() {
3. $conditions = array(
4. 'created BETWEEN (curdate() 4 interval 7 day) and (curdate() 4
interval 0 day))'
5.);
6. return $this4>find('all', compact('conditions'));
7. }
8. }

1. $recent = $this4>Example4>getRecent();

This attribute holds rules that allow the model to make data validation decisions before saving.
Keys named after fields hold regex values allowing the model to try to make matches.

It is not necessary to call validate() before save() as save() will automatically validate your data
before actually saving.

For more information on validation, see theData Validation chapter (http://
book.cakephp.org/view/125/data+validation) later on in this manual.

3.7.8.11 name

As you saw earlier in this chapter, the name attribute is a compatibility feature for PHP4 users
and is set to the same value as the model name.

Example usage:

3.7.8.12 cacheQueries

If set to true, data fetched by the model during a single request is cached. This caching is in�
memory only, and only lasts for the duration of the request. Any duplicate requests for the same
data is handled by the cache.

3.7.9 Additional Methods and Properties

While CakePHP’s model functions should get you where you need to go, don’t forget that model
classes are just that: classes that allow you to write your own methods or define your own
properties.

Any operation that handles the saving and fetching of data is best housed in your model
classes. This concept is often referred to as the fat model.

This getRecent()method can now be used within the controller.

3.8 Behaviors

Model behaviors are a way to organize some of the functionality defined in CakePHP models.
They allow us to separate logic that may not be directly related to a model, but needs to be there.

1. <?php
2. class Category extends AppModel {
3. var $name = 'Category';
4. var $actsAs = array('Tree');
5. }
6. ?>

1. // Set ID
2. $this4>Category4>id = 42;
3. // Use behavior method, children():
4. $kids = $this4>Category4>children();

1. <?php
2. class Category extends AppModel {
3. var $name = 'Category';
4. var $actsAs = array('Tree' => array(
5. 'left' => 'left_node',
6. 'right' => 'right_node'
7.));
8. }
9. ?>

By providing a simple yet powerful way to extendmodels, behaviors allow us to attach
functionality to models by defining a simple class variable. That's how behaviors allow models
to get rid of all the extra weight that might not be part of the business contract they are
modeling, or that is also needed in different models and can then be extrapolated.

As an example, consider a model that gives us access to a database table which stores
structural information about a tree. Removing, adding, andmigrating nodes in the tree is not
as simple as deleting, inserting, and editing rows in the table. Many records may need to be
updated as things move around. Rather than creating those tree�manipulation methods on a
per model basis (for every model that needs that functionality), we could simply tell our model
to use the TreeBehavior, or in more formal terms, we tell our model to behave as a Tree. This is
known as attaching a behavior to a model. With just one line of code, our CakePHP model
takes on a whole new set of methods that allow it to interact with the underlying structure.

CakePHP already includes behaviors for tree structures, translated content, access control list
interaction, not to mention the community�contributed behaviors already available in the
CakePHP Bakery (http://bakery.cakephp.org). In this section, we'll cover the basic usage
pattern for adding behaviors to models, how to use CakePHP's built�in behaviors, and how to
create our own.

3.8.1 Using Behaviors

Behaviors are attached to models through the $actsAs model class variable:

This example shows how a Category model could be managed in a tree structure using the
TreeBehavior. Once a behavior has been specified, use the methods added by the behavior as if
they always existed as part of the original model:

Some behaviors may require or allow settings to be defined when the behavior is attached to the
model. Here, we tell our TreeBehavior the names of the "left" and "right" fields in the
underlying database table:

We can also attach several behaviors to a model. There's no reason why, for example, our
Category model should only behave as a tree, it may also need internationalization support:

1. <?php
2. class Category extends AppModel {
3. var $name = 'Category';
4. var $actsAs = array(
5. 'Tree' => array(
6. 'left' => 'left_node',
7. 'right' => 'right_node'
8.),
9. 'Translate'
10.);
11. }
12. ?>

1. // Detach a behavior from our model:
2. $this4>Category4>Behaviors4>detach('Translate');

1. // Stop letting the behavior handle our model callbacks
2. $this4>Category4>Behaviors4>disable('Translate');

1. // If our behavior is not handling model callbacks
2. if (!$this4>Category4>Behaviors4>enabled('Translate')) {
3. // Tell it to start doing so
4. $this4>Category4>Behaviors4>enable('Translate');
5. }

1. // If today is Dec 25
2. if (date('m/d') == '12/25') {
3. // Our model needs to behave as a Christmas model
4. $this4>Category4>Behaviors4>attach('Christmas');
5. }

1. // We will change one setting from our already attached behavior
2. $this4>Category4>Behaviors4>attach('Tree', array('left' => 'new_left_
node'));

So far we have been adding behaviors to models using a model class variable. That means that
our behaviors will be attached to our models throughout the model's lifetime. However, we may
need to "detach" behaviors from our models at runtime. Let's say that on our previous Category
model, which is acting as a Tree and a Translate model, we need for some reason to force it to
stop acting as a Translate model:

That will make our Category model stop behaving as a Translate model from thereon. We may
need, instead, to just disable the Translate behavior from acting upon our normal model
operations: our finds, our saves, etc. In fact, we are looking to disable the behavior from acting
upon our CakePHP model callbacks. Instead of detaching the behavior, we then tell our model
to stop informing of these callbacks to the Translate behavior:

We may also need to find out if our behavior is handling those model callbacks, and if not we
then restore its ability to react to them:

Just as we could completely detach a behavior from a model at runtime, we can also attach new
behaviors. Say that our familiar Category model needs to start behaving as a Christmas model,
but only on Christmas day:

We can also use the attach method to override behavior settings:

There's also a method to obtain the list of behaviors a model has attached. If we pass the name
of a behavior to the method, it will tell us if that behavior is attached to the model, otherwise it
will give us the list of attached behaviors:

1. // If the Translate behavior is not attached
2. if (!$this4>Category4>Behaviors4>attached('Translate')) {
3. // Get the list of all behaviors the model has attached
4. $behaviors = $this4>Category4>Behaviors4>attached();
5. }

1. class Post extends AppModel {
2. var $name = 'Post'
3. var $actsAs = array(
4. 'YourBehavior' => array(
5. 'option1_key' => 'option1_value'));
6. }

1. function setup(&$Model, $settings) {
2. if (!isset($this4>settings[$Model4>alias])) {
3. $this4>settings[$Model4>alias] = array(
4. 'option1_key' => 'option1_default_value',
5. 'option2_key' => 'option2_default_value',
6. 'option3_key' => 'option3_default_value',
7.);
8. }
9. $this4>settings[$Model4>alias] = array_merge(
10. $this4>settings[$Model4>alias], (array)$settings);
11. }

3.8.2 Creating Behaviors

Behaviors that are attached to Models get their callbacks called automatically. The callbacks
are similar to those found in Models: beforeFind, afterFind, beforeSave, afterSave,
beforeDelete, afterDelete and onError � see CallbackMethods (http://book.cakephp.org/
view/76/Callback+Methods) .

It's often helpful to use a core behavior as a template when creating your own. Find them in
cake/libs/models/behaviors/.

Every callback takes a reference to the model it is being called from as the first parameter.

Besides implementing the callbacks, you can add settings per behavior and/or model behavior
attachment. Information about specifying settings can be found in the chapters about core
behaviors and their configuration.

A quick example that illustrates how behavior settings can be passed from the model to the
behavior:

As of 1.2.8004, CakePHP adds those settings once per model/alias only. To keep your behavior
upgradable you should respect aliases (or models).

An upgrade�friendly function setup would look something like this:

3.9 DataSources

DataSources are the link between models and the source of data that models represent. In
many cases, the data is retrieved from a relational database such as MySQL, PostgreSQL or
MSSQL. CakePHP is distributed with several database�specific datasources (see the dbo_*
class files in cake/libs/model/datasources/dbo/), a summary of which is listed here
for your convenience:

dbo_adodb.php

dbo_db2.php
dbo_firebird.php
dbo_mssql.php
dbo_mysql.php
dbo_mysqli.php
dbo_odbc.php
dbo_oracle.php
dbo_postgres.php
dbo_sqlite.php
dbo_sybase.php

When specifying a database connection configuration in app/config/database.php,
CakePHP transparently uses the corresponding database datasource for all model operations.
So, even though youmight not have known about datasources, you've been using them all
along.

All of the above sources derive from a base DboSource class, which aggregates some logic
that is common to most relational databases. If you decide to write a RDBMS datasource,
working from one of these (e.g. dbo_mysql.php or dbo_mssql.php is your best bet.

Most people, however, are interested in writing datasources for external sources of data, such
as remote REST APIs or even an LDAP server. So that's what we're going to look at now.

3.9.1 Basic API For DataSources

A datasource can, and should implement at least one of the following methods: create,
read, update and/or delete (the actual method signatures & implementation details are
not important for the moment, and will be described later). You need not implement more of the
methods listed above than necessary � if you need a read�only datasource, there's no reason to
implement create and update.

Methods that must be implemented

describe($model)
listSources()
At least one of:

create($model, $fields = array(), $values = array())
read($model, $queryData = array())
update($model, $fields = array(), $values = array())
delete($model, $id = null)

It is also possible (and sometimes quite useful) to define the $_schema class attribute inside
the datasource itself, instead of in the model.

And that's pretty much all there is to it. By coupling this datasource to a model, you are then
able to use Model::find()/save() as you would normally, and the appropriate data and/
or parameters used to call those methods will be passed on to the datasource itself, where you
can decide to implement whichever features you need (e.g. Model::find options such as
'conditions' parsing, 'limit' or even your own custom parameters).

3.9.2 An Example

Here is a simple example of how to use Datasources and HttpSocket to implement a very
basic Twitter (http://twitter.com/) source that allows querying the Twitter API as well as
posting new status updates to a configured account.

This examplewill only work in PHP 5.2 and above, due to the use of json_decode for
the parsing of JSON formatted data.

You would place the Twitter datasource in app/models/datasources/twitter_
source.php:

1. <?php
2. /**
3. * Twitter DataSource
4. *
5. * Used for reading and writing to Twitter, through models.
6. *
7. * PHP Version 5.x
8. *
9. * CakePHP(tm) : Rapid Development Framework (http://www.cakephp.org)
10. * Copyright 200542009, Cake Software Foundation, Inc. (http://
www.cakefoundation.org)
11. *
12. * Licensed under The MIT License
13. * Redistributions of files must retain the above copyright notice.
14. *
15. * @filesource
16. * @copyright Copyright 2009, Cake Software Foundation, Inc.
(http://www.cakefoundation.org)
17. * @link http://cakephp.org CakePHP(tm) Project
18. * @license http://www.opensource.org/licenses/mit4license.php
The MIT License
19. */
20. App::import('Core', 'HttpSocket');
21. class TwitterSource extends DataSource {
22. protected $_schema = array(
23. 'tweets' => array(
24. 'id' => array(
25. 'type' => 'integer',
26. 'null' => true,
27. 'key' => 'primary',
28. 'length' => 11,
29.),
30. 'text' => array(
31. 'type' => 'string',
32. 'null' => true,
33. 'key' => 'primary',
34. 'length' => 140
35.),
36. 'status' => array(
37. 'type' => 'string',
38. 'null' => true,
39. 'key' => 'primary',
40. 'length' => 140
41.),
42.)
43.);
44. public function __construct($config) {
45. $auth = "{$config['login']}:{$config['password']}";
46. $this4>connection = new HttpSocket(
47. "http://{$auth}@twitter.com/"
48.);
49. parent::__construct($config);
50. }
51. public function listSources() {
52. return array('tweets');
53. }
54. public function read($model, $queryData = array()) {
55. if (!isset($queryData['conditions']['username'])) {
56. $queryData['conditions']['username'] = $this4>config

['login'];
57. }
58. $url = "/statuses/user_timeline/";
59. $url .= "{$queryData['conditions']['username']}.json";
60.
61. $response = json_decode($this4>connection4>get($url), true);
62. $results = array();
63.
64. foreach ($response as $record) {
65. $record = array('Tweet' => $record);
66. $record['User'] = $record['Tweet']['user'];
67. unset($record['Tweet']['user']);
68. $results[] = $record;
69. }
70. return $results;
71. }
72. public function create($model, $fields = array(), $values = array()
) {
73. $data = array_combine($fields, $values);
74. $result = $this4>connection4>post('/statuses/update.json', $
data);
75. $result = json_decode($result, true);
76. if (isset($result['id']) && is_numeric($result['id'])) {
77. $model4>setInsertId($result['id']);
78. return true;
79. }
80. return false;
81. }
82. public function describe($model) {
83. return $this4>_schema['tweets'];
84. }
85. }
86. ?>

1. <?php
2. class Tweet extends AppModel {
3. public $useDbConfig = 'twitter';
4. }
5. ?>

1. <?php
2. var $twitter = array(
3. 'datasource' => 'twitter',
4. 'login' => 'username',
5. 'password' => 'password',
6.);
7. ?>

Your model implementation could be as simple as:

If we had not defined our schema in the datasource itself, you would get an error message to
that effect here.

And the configuration settings in your app/config/database.php would resemble
something like this:

Using the familiar model methods from a controller:

1. <?php
2. // Will use the username defined in the $twitter as shown above:
3. $tweets = $this4>Tweet4>find('all');
4. // Finds tweets by another username
5. $conditions= array('username' => 'caketest');
6. $otherTweets = $this4>Tweet4>find('all', compact('conditions'));
7. ?>

1. <?php
2. $this4>Tweet4>save(array('status' => 'This is an update'));
3. ?>

Similarly, saving a new status update:

3.10 Views

3.10.1 View Templates

The view layer of CakePHP is how you speak to your users. Most of the time your views will be
showing (X)HTML documents to browsers, but youmight also need to serve AMF data to a
Flash object, reply to a remote application via SOAP, or output a CSV file for a user.

CakePHP view files are written in plain PHP and have a default extension of .ctp (CakePHP
Template). These files contain all the presentational logic needed to get the data it received
from the controller in a format that is ready for the audience you’re serving to.

View files are stored in /app/views/, in a folder named after the controller that uses the files,
and named after the action it corresponds to. For example, the view file for the Products
controller's "view()" action, would normally be found in /app/views/products/view.ctp.

The view layer in CakePHP can be made up of a number of different parts. Each part has
different uses, and will be covered in this chapter:

layouts: view files that contain presentational code that is found wrapping many
interfaces in your application. Most views are rendered inside of a layout.
elements: smaller, reusable bits of view code. Elements are usually rendered inside of
views.
helpers: these classes encapsulate view logic that is needed in many places in the view
layer. Among other things, helpers in CakePHP can help you build forms, build AJAX
functionality, paginate model data, or serve RSS feeds.

3.10.2 Layouts

A layout contains presentation code that wraps around a view. Anything you want to see in all
of your views should be placed in a layout.

Layout files should be placed in /app/views/layouts. CakePHP's default layout can be
overridden by creating a new default layout at /app/views/layouts/default.ctp. Once a new
default layout has been created, controller�rendered view code is placed inside of the default
layout when the page is rendered.

When you create a layout, you need to tell CakePHP where to place the code for your views. To
do so, make sure your layout includes a place for $content_for_layout (and optionally, $title_
for_layout). Here's an example of what a default layout might look like:

1. <!DOCTYPE html PUBLIC "4//W3C//DTD XHTML 1.0 Transitional//EN"
2. "http://www.w3.org/TR/xhtml1/DTD/xhtml14transitional.dtd">
3. <html xmlns="http://www.w3.org/1999/xhtml">
4. <head>
5. <title><?php echo $title_for_layout?></title>
6. <link rel="shortcut icon" href="favicon.ico" type="image/x4icon">
7. <!44 Include external files and scripts here (See HTML helper for more
info.) 44>
8. <?php echo $scripts_for_layout ?>
9. </head>
10. <body>
11. <!44 If you'd like some sort of menu to
12. show up on all of your views, include it here 44>
13. <div id="header">
14. <div id="menu">...</div>
15. </div>
16. <!44 Here's where I want my views to be displayed 44>
17. <?php echo $content_for_layout ?>
18.
19. <!44 Add a footer to each displayed page 44>
20. <div id="footer">...</div>
21. </body>
22. </html>

1. <?php
2. class UsersController extends AppController {
3. function viewActive() {
4. $this4>pageTitle = 'View Active Users';
5. }
6. }
7. ?>

$scripts_for_layout contains any external files and scripts included with the built�in
HTML helper. Useful for including javascript and CSS files from views.

When using $html4>css() or $javascript4>link() in view files, specify 'false' for the
'in�line' argument to place the html source in $scripts_for_layout. (See API for more
details on usage).

$content_for_layout contains the view. This is where the view code will be placed.

$title_for_layout contains the page title.

To set the title for the layout, it's easiest to do so in the controller, using the $pageTitle
controller variable.

You can create as many layouts as you wish: just place them in the app/views/layouts
directory, and switch between them inside of your controller actions using the controller's $
layout variable, or setLayout() function.

For example, if a section of my site included a smaller ad banner space, I might create a new
layout with the smaller advertising space and specify it as the layout for all controller's actions
using something like:

var $layout = 'default_small_ad';

1. <?php
2. class UsersController extends AppController {
3. function viewActive() {
4. $this4>pageTitle = 'View Active Users';
5. $this4>layout = 'default_small_ad';
6. }
7. function viewImage() {
8. $this4>layout = 'image';
9. //output user image
10. }
11. }
12. ?>

1. <?php echo $this4>element('helpbox'); ?>

1. <?php echo
2. $this4>element('helpbox',
3. array("helptext" => "Oh, this text is very helpful."));
4. ?>

1. <?php
2. echo $helptext; //outputs "Oh, this text is very helpful."
3. ?>

CakePHP features two core layouts (besides CakePHP’s default layout) you can use in your own
application: ‘ajax’ and ‘flash’. The Ajax layout is handy for crafting Ajax responses � it’s an
empty layout (most ajax calls only require a bit of markup in return, rather than a fully�
rendered interface). The flash layout is used for messages shown by the controllers flash()
method.

Three other layouts xml, js, and rss exist in the core for a quick and easy way to serve up
content that isn’t text/html.

3.10.3 Elements

Many applications have small blocks of presentation code that need to be repeated from page to
page, sometimes in different places in the layout. CakePHP can help you repeat parts of your
website that need to be reused. These reusable parts are called Elements. Ads, help boxes,
navigational controls, extra menus, login forms, and callouts are often implemented in
CakePHP as elements. An element is basically a mini�view that can be included in other views,
in layouts, and even within other elements. Elements can be used to make a view more
readable, placing the rendering of repeating elements in its own file. They can also help you re�
use content fragments in your application.

Elements live in the /app/views/elements/ folder, and have the .ctp filename extension.
They are output using the element method of the view.

3.10.3.1 Passing Variables into an Element

You can pass data to an element through the element's second argument:

Inside the element file, all the passed variables are available as members of the parameter array
(in the same way that set() in the controller works with view files). In the above example, the
/app/views/elements/helpbox.ctp file can use the $helptext variable.

1. <?php echo
2. $this4>element('helpbox',
3. array(
4. "helptext" => "This is passed to the element as $helptext",
5. "foobar" => "This is passed to the element as $foobar",
6. "cache" => "+2 days", //sets the caching to +2 days.
7. "plugin" => "" //to render an element from a plugin
8.)
9.);
10. ?>

1. <?php
2. $this4>element('helpbox',
3. array(
4. "cache" => array('time'=> "+7 days",'key'=>'unique value')
5.)
6.);
7. ?>

1. <?php
2. class PostsController extends AppController {
3. ...
4. function index() {
5. $posts = $this4>paginate();
6. if (isset($this4>params['requested'])) {
7. return $posts;
8. } else {
9. $this4>set('posts', $posts);
10. }
11. }
12. }
13. ?>

The element() function combines options for the element with the data for the element to
pass. The two options are 'cache' and 'plugin'. An example:

To cache different versions of the same element in an application, provide a unique cache key
value using the following format:

You can take full advantage of elements by using requestAction(). The requestAction
() function fetches view variables from a controller action and returns them as an array. This
enables your elements to perform in true MVC style. Create a controller action that prepares the
view variables for your elements, then call requestAction() inside the second parameter of
element() to feed the element the view variables from your controller.

To do this, in your controller add something like the following for the Post example.

And then in the element we can access the paginated posts model. To get the latest five posts in
an ordered list we would do something like the following:

1. <h2>Latest Posts</h2>
2. <?php $posts = $this4>requestAction('posts/index/sort:created/
direction:asc/limit:5'); ?>
3. <?php foreach($posts as $post): ?>
4.
5. <?php echo $post['Post']['title']; ?>
6.
7. <?php endforeach; ?>

1. <?php echo $this4>element('helpbox', array('cache' => true)); ?>

1. <?php
2. echo $this4>element('helpbox', array('cache' => array('key' => 'first_
use', 'time' => '+1 day'), 'var' => $var));
3. echo $this4>element('helpbox', array('cache' => array('key' => 'second_
use', 'time' => '+1 day'), 'var' => $differentVar));
4. ?>

1. <?php echo $this4>element('helpbox', array('plugin' => 'pluginname')); ?>

3.10.3.2 Caching Elements

You can take advantage of CakePHP view caching if you supply a cache parameter. If set to
true, it will cache for 1 day. Otherwise, you can set alternative expiration times. See Caching
(http://book.cakephp.org/view/156/caching) for more information on setting expiration.

If you render the same element more than once in a view and have caching enabled be sure to
set the 'key' parameter to a different name each time. This will prevent each succesive call from
overwriting the previous element() call's cached result. E.g.

The above will ensure that both element results are cached separately.

3.10.3.3 Requesting Elements from a Plugin

If you are using a plugin and wish to use elements from within the plugin, just specify the
plugin parameter. If the view is being rendered for a plugin controller/action, it will
automatically point to the element for the plugin. If the element doesn't exist in the plugin, it
will look in the main APP folder.

3.10.4 View methods

View methods are accessible in all view, element and layout files. To call any view method use
$this4>method()

3.10.4.1 set()

set(string $var, mixed $value)

Views have a set()method that is analogous to the set() found in Controller objects. It
allows you to add variables to the viewVars (#) . Using set() from your view file will add the
variables to the layout and elements that will be rendered later. See Controller::set() (http://

1. $this4>set('activeMenuButton', 'posts');

1. $this4>error(404, 'Not found', 'This page was not found, sorry');

book.cakephp.org/view/57/Controller+Methods#set+427) for more information on using
set().

In your view file you can do

Then in your layout the $activeMenuButton variable will be available and contain the value
'posts'.

3.10.4.2 getVar()

getVar(string $var)

Gets the value of the viewVar with the name $var

3.10.4.3 getVars()

getVars()

Gets a list of all the available view variables in the current rendering scope. Returns an array of
variable names.

3.10.4.4 error()

error(int $code, string $name, string $message)

Displays an error page to the user. Uses layouts/error.ctp to render the page.

This will render an error page with the title andmessages specified. Its important to note that
script execution is not stopped by View::error() So you will have to stop code execution
yourself if you want to halt the script.

3.10.4.5 element()

element(string $elementPath, array $data, bool $loadHelpers)

Renders an element or view partial. See the section on View Elements (http://
book.cakephp.org/view/97/Elements) for more information and examples.

3.10.4.6 uuid

uuid(string $object, mixed $url)

1. $uuid = $this4>uuid('form', array('controller' => 'posts', 'action'
=> 'index'));
2. //$uuid contains 'form0425fe3bad'

1. class ExampleController extends AppController {
2. var $view = 'Theme';
3. }

1. class ExampleController extends AppController {
2. var $view = 'Theme';
3. var $theme = 'example';
4. }

1. $this4>theme = 'another_example';

Generates a unique non�randomDOM ID for an object, based on the object type and url. This
method is often used by helpers that need to generate unique DOM ID's for elements such as
the AjaxHelper.

3.10.4.7 addScript()

addScript(string $name, string $content)

Adds content to the internal scripts buffer. This buffer is made available in the layout as $
scripts_for_layout. This method is helpful when creating helpers that need to add
javascript or css directly to the layout. Keep in mind that scripts added from the layout, or
elements in the layout will not be added to $scripts_for_layout. This method is most
often used from inside helpers, like the Javascript (http://book.cakephp.org/view/207/
Javascript) andHtml (http://book.cakephp.org/view/205/HTML)Helpers.

3.10.5 Themes

You can take advantage of themes, making it easy to switch the look and feel of your page
quickly and easily.

To use themes, you need to tell your controller to use the ThemeView class instead of the default
View class.

To declare which theme to use by default, specify the theme name in your controller.

You can also set or change the theme name within an action or within the beforeFilter or
beforeRender callback functions.

Theme view files need to be within the /app/views/themed/ folder. Within the themed folder,
create a folder using the same name as your theme name. Beyond that, the folder structure
within the /app/views/themed/example/ folder is exactly the same as /app/views/.

For example, the view file for an edit action of a Posts controller would reside at /app/views/
themed/example/posts/edit.ctp. Layout files would reside in /app/views/themed/example/
layouts/.

If a view file can't be found in the theme, CakePHP will try to locate the view file in the /app/
views/ folder. This way, you can create master view files and simply override them on a case�
by�case basis within your theme folder.

1. class ExampleController extends AppController {
2. function download () {
3. $this4>view = 'Media';
4. $params = array(
5. 'id' => 'example.zip',
6. 'name' => 'example',
7. 'download' => true,
8. 'extension' => 'zip',
9. 'path' => 'files' . DS
10.);
11. $this4>set($params);
12. }
13. }

If you have CSS or JavaScript files that are specific to your theme, you can store them in a
themed folder within webroot. For example, your stylesheets would be stored in /app/webroot/
themed/example/css/ and your JavaScript files would be stored in /app/webroot/themed/
example/js/.

All of CakePHP's built�in helpers are aware of themes and will create the correct paths
automatically. Like view files, if a file isn't in the theme folder, it'll default to the main webroot
folder.

3.10.6 Media Views

Media views allow you to send binary files to the user. For example, youmay wish to have a
directory of files outside of the webroot to prevent users from direct linking them. You can use
the Media view to pull the file from a special folder within /app/, allowing you to perform
authentication before delivering the file to the user.

To use the Media view, you need to tell your controller to use the MediaView class instead of the
default View class. After that, just pass in additional parameters to specify where your file is
located.

Parameters Description

id The ID is the file name as it resides on the file server including the file
extension.

name The name allows you to specify an alternate file name to be sent to the user.
Specify the name without the file extension.

download A boolean value indicating whether headers should be set to force download.

extension
The file extension. This is matched against an internal list of acceptable mime
types. If the mime type specified is not in the list, the file will not be
downloaded.

path The folder name, including the final directory separator. The path is relative to
the APP folder.

mimeType An array with additional mime types to be merged with MediaView internal list
of acceptable mime types.

cache
A boolean or integer value � If set to true it will allow browsers to cache the file
(defaults to false if not set); otherwise set it to the number of seconds in the
future for when the cache should expire.

3.11 Helpers

Helpers are the component�like classes for the presentation layer of your application. They
contain presentational logic that is shared between many views, elements, or layouts. This

1. <?php
2. class BakeriesController extends AppController {
3. var $helpers = array('Form', 'Html', 'Javascript', 'Time');
4. }
5. ?>

1. <?php
2. class BakeriesController extends AppController {
3. function bake {
4. $this4>helpers[] = 'Time';
5. }
6. function mix {
7. // The Time helper is not loaded here and thus not available
8. }
9. }
10. ?>

1. <?php
2. /* /app/views/helpers/link.php */
3. class LinkHelper extends AppHelper {
4. function makeEdit($title, $url) {
5. // Logic to create specially formatted link goes here...
6. }
7. }
8. ?>

chapter will show you how to create your own helpers, and outline the basic tasks CakePHP’s
core helpers can help you accomplish. For more information on core helpers, check outBuilt+
in Helpers (http://book.cakephp.org/view/181/built+in+helpers) .

3.11.1 Using Helpers

You use helpers in CakePHP bymaking a controller aware of them. Each controller has a $
helpers property that lists the helpers to be made available in the view. To enable a helper in
your view, add the name of the helper to the controller’s $helpers array.

You can also add helpers from within an action, so they will only be available to that action
and not the other actions in the controller. This saves processing power for the other actions
that do not use the helper as well as help keep the controller better organized.

3.11.2 Creating Helpers

If a core helper (or one showcased on Cakeforge or the Bakery) doesn’t fit your needs, helpers
are easy to create.

Let's say we wanted to create a helper that could be used to output a specifically crafted CSS�
styled link you neededmany different places in your application. In order to fit your logic in to
CakePHP's existing helper structure, you'll need to create a new class in /app/views/helpers.
Let's call our helper LinkHelper. The actual PHP class file would look something like this:

There are a few methods included in CakePHP's Helper class youmight want to take advantage
of:

output(string $string)

Use this function to hand any data back to your view.

1. <?php
2. function makeEdit($title, $url) {
3. // Use the helper's output function to hand formatted
4. // data back to the view:
5. return $this4>output(
6. "<div class=\"editOuter\">
7. $title
8. </div>"
9.);
10. }
11. ?>

1. <?php
2. /* /app/views/helpers/link.php (using other helpers) */
3. class LinkHelper extends AppHelper {
4. var $helpers = array('Html');
5. function makeEdit($title, $url) {
6. // Use the HTML helper to output
7. // formatted data:
8. $link = $this4>Html4>link($title, $url, array('class' => 'edit')
);
9. return $this4>output("<div class=\"editOuter\">$link</div>");
10. }
11. }
12. ?>

1. <!44 make a link using the new helper 44>
2. <?php echo $link4>makeEdit('Change this Recipe', '/recipes/edit/5') ?>

3.11.2.1 Including other Helpers

Youmay wish to use some functionality already existing in another helper. To do so, you can
specify helpers you wish to use with a $helpers array, formatted just as you would in a
controller.

3.11.2.2 Using your Helper

Once you've created your helper and placed it in /app/views/helpers/, you'll be able to include
it in your controllers using the special variable $helpers.

Once your controller has been made aware of this new class, you can use it in your views by
accessing a variable named after the helper:

Remember to include the FormHelper in the $helpers array if appropriate. The Html and
Session (If sessions are enabled) helpers are always available.

3.11.3 Creating Functionality for All Helpers

All helpers extend a special class, AppHelper (just like models extend AppModel and
controllers extend AppController). To create functionality that would be available to all
helpers, create /app/app_helper.php.

1. <?php
2. class AppHelper extends Helper {
3. function customMethod () {
4. }
5. }
6. ?>

3.11.4 Core Helpers

CakePHP features a number of helpers that aid in view creation. They assist in creating well�
formedmarkup (including forms), aid in formatting text, times and numbers, and can even
speed up Ajax functionality. Here is a summary of the built�in helpers. For more information,
check outCoreHelpers (http://book.cakephp.org/view/181/Core+Helpers) .

CakePHPHelper Description

Ajax (http://
book.cakephp.org/view/208/
AJAX)

Used in tandemwith the Prototype JavaScript library to
create Ajax functionality in views. Contains shortcut
methods for drag/drop, ajax forms & links, observers, and
more.

Cache (http://
book.cakephp.org/view/213/
Cache)

Used by the core to cache view content.

Form (http://
book.cakephp.org/view/182/
Form)

Creates HTML forms and form elements that self populate
and handle validation problems.

Html (http://
book.cakephp.org/view/205/
HTML)

Convenience methods for crafting well�formedmarkup.
Images, links, tables, header tags andmore.

Javascript (http://
book.cakephp.org/view/207/
Javascript)

Used to escape values for use in JavaScripts, write out data
to JSON objects, and format code blocks.

Number (http://
book.cakephp.org/view/215/
Number)

Number and currency formatting.

Paginator (http://
book.cakephp.org/view/496/
Paginator)

Model data pagination and sorting.

Rss (http://
book.cakephp.org/view/494/
RSS)

Convenience methods for outputting RSS feed XML data.

Session (http://
book.cakephp.org/view/484/
Session)

Access for writing out session values in views.

Text (http://
book.cakephp.org/view/216/
Text)

Smart linking, highlighting, word smart truncation.

Time (http://
book.cakephp.org/view/217/
Time)

Proximity detection (is this next year?), nice string
formatting(Today, 10:30 am) and time zone conversion.

Xml (http://
book.cakephp.org/view/380/
XML)

Convenience methods for creating XML headers and
elements.

3.12 Scaffolding

1. <?php
2. class CategoriesController extends AppController {
3. var $scaffold;
4. }
5. ?>

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $displayField = 'first_name';
5. }
6. ?>

Application scaffolding is a technique that allows a developer to define and create a basic
application that can create, retrieve, update and delete objects. Scaffolding in CakePHP also
allows developers to define how objects are related to each other, and to create and break those
links.

All that’s needed to create a scaffold is a model and its controller. Once you set the $scaffold
variable in the controller, you’re up and running.

CakePHP’s scaffolding is pretty cool. It allows you to get a basic CRUD application up and
going in minutes. So cool that you'll want to use it in production apps. Now, we think its cool
too, but please realize that scaffolding is... well... just scaffolding. It's a loose structure you
throw up real quick during the beginning of a project in order to get started. It isn't meant to be
completely flexible, it’s meant as a temporary way to get up and going. If you find yourself really
wanting to customize your logic and your views, its time to pull your scaffolding down in order
to write some code. CakePHP’s Bake console, covered in the next section, is a great next step: it
generates all the code that would produce the same result as the most current scaffold.

Scaffolding is a great way of getting the early parts of developing a web application started.
Early database schemas are subject to change, which is perfectly normal in the early part of the
design process. This has a downside: a web developer hates creating forms that never will see
real use. To reduce the strain on the developer, scaffolding has been included in CakePHP.
Scaffolding analyzes your database tables and creates standard lists with add, delete and edit
buttons, standard forms for editing and standard views for inspecting a single item in the
database.

To add scaffolding to your application, in the controller, add the $scaffold variable:

Assuming you’ve created even the most basic Category model class file (in /app/models/
category.php), you’re ready to go. Visit http://example.com/categories to see your new
scaffold.

Creating methods in controllers that are scaffolded can cause unwanted results. For example, if
you create an index() method in a scaffolded controller, your index method will be rendered
rather than the scaffolding functionality.

Scaffolding is knowledgeable about model associations, so if your Category model belongsTo a
User, you’ll see related User IDs in the Category listings. If you’d rather see something besides
an ID (like the user’s first name), you can set the $displayField variable in the model.

Let’s set the $displayField variable in our User class so that users related to categories will be
shown by first name rather than just an ID in scaffolding. This feature makes scaffolding more
readable in many instances.

3.12.1 Customizing Scaffold Views

If you're looking for something a little different in your scaffolded views, you can create
templates. We still don't recommend using this technique for production applications, but such
a customization may be useful during prototyping iterations.

Customization is done by creating view templates:

Custom scaffolding views for a specific controller
(PostsController in this example) should be placed like so:

/app/views/posts/scaffold.index.ctp
/app/views/posts/scaffold.show.ctp
/app/views/posts/scaffold.edit.ctp
/app/views/posts/scaffold.new.ctp

Custom scaffolding views for all controllers should be placed like
so:

/app/views/scaffolds/index.ctp
/app/views/scaffolds/show.ctp
/app/views/scaffolds/edit.ctp
/app/views/scaffolds/new.ctp
/app/views/scaffolds/add.ctp

3.13 The CakePHP Console

This section provides an introduction into CakePHP at the command�line. If you’ve ever needed
access to your CakePHP MVC classes in a cron job or other command�line script, this section
is for you.

PHP provides a powerful CLI client that makes interfacing with your file system and
applications much smoother. The CakePHP console provides a framework for creating shell
scripts. The Console uses a dispatcher�type setup to load a shell or task, and hand it its
parameters.

A command�line (CLI) build of PHP must be available on the system if you plan to use the
Console.

Before we get into specifics, let’s make sure we can run the CakePHP Console. First, you’ll need
to bring up a system shell. The examples shown in this section will be in bash, but the
CakePHP Console is Windows�compatible as well. Let’s execute the Console program from
bash. This example assumes that the user is currently logged into a bash prompt and is
currently at the root of a CakePHP installation.

You can technically run the console using something like this:

$ cd /my/cake/app_folder
$../cake/console/cake

But the preferred usage is adding the console directory to your path so you can use the cake
command anywhere:

$ cake

Running the Console with no arguments produces this help message:

Hello user,

Welcome to CakePHP v1.2 Console
444
Current Paths:
 4working: /path/to/cake/
 4root: /path/to/cake/
 4app: /path/to/cake/app/
 4core: /path/to/cake/

Changing Paths:
your working path should be the same as your application path
to change your path use the '4app' param.
Example: 4app relative/path/to/myapp or 4app /absolute/path/to/
myapp

Available Shells:

 app/vendors/shells/:
 4 none

 vendors/shells/:
 4 none

 cake/console/libs/:
 acl
 api
 bake
 console
 extract

To run a command, type 'cake shell_name [args]'
To get help on a specific command, type 'cake shell_name help'

The first information printed relates to paths. This is especially helpful if you’re running the
Console from different parts of the filesystem.

Many users add the CakePHP Console to their system’s path so it can be accessed easily.
Printing out the working, root, app, and core paths allows you to see where the Console will be
making changes. To change the app folder you wish to work with, you can supply its path as
the first argument to the cake command. This next example shows how to specify an app
folder, assuming you’ve already added the console folder to your PATH:

$ cake 4app /path/to/app

The path supplied can be relative to the current working directory or supplied as an absolute
path.

3.13.1 Creating Shells & Tasks

3.13.1.1 Creating Your Own Shells

1. <?php
2. class ReportShell extends Shell {
3. function main() {}
4. }
5. ?>

1. <?php
2. class ReportShell extends Shell {
3. var $uses = array('Order');
4. function main() {
5. }
6. }
7. ?>

1. class ReportShell extends Shell {
2. var $uses = array('Order');
3. function main() {
4. //Get orders shipped in the last month
5. $month_ago = date('Y4m4d H:i:s', strtotime('41 month'));
6. $orders = $this4>Order4>find("all",array
('conditions'=>"Order.shipped >= '$month_ago'"));
7. //Print out each order's information
8. foreach($orders as $order) {
9. $this4>out('Order date: ' . $order['Order']['created']
. "\n");
10. $this4>out('Amount: $' . number_format($order['Order']
['amount'], 2) . "\n");
11. $this4>out('44' .
"\n");
12.
13. $total += $order['Order']['amount'];
14. }
15. //Print out total for the selected orders
16. $this4>out("Total: $" . number_format($total, 2) . "\n");
17. }
18. }

Let's create a shell for use in the Console. For this example, we'll create a ‘report' shell that
prints out some model data. First, create report.php in /vendors/shells/.

From this point, we can run the shell, but it won't do much. Let's add some models to the shell
so that we can create a report of some sort. This is done just as it is in the controller: by adding
the names of models to the $uses variable.

Once we've added our model to the $uses array, we can use it in the main() method. In this
example, our Order model should now be accessible as $this�>Order in the main() method of
our new shell.

Here's a simple example of the logic we might use in this shell:

You would be able to run this report by executing this command (if the cake command is in
your PATH):

$ cake report

where report is the name of the shell file in /vendor/shells/ without the .php extension. This
should yield something like:

Hello user,
 Welcome to CakePHP v1.2 Console

1. <?php
2. class BakeShell extends Shell {
3. var $tasks = array('Project', 'DbConfig', 'Model', 'View',
'Controller');
4. }
5. ?>

1. <?php
2. class SoundTask extends Shell {
3. var $uses = array('Model'); // same as controller var $uses
4. function execute() {}
5. }
6. ?>

 444
 App : app
 Path: /path/to/cake/app
 444
 Order date: 2007407430 10:31:12
 Amount: $42.78
 44
 Order date: 2007407430 21:16:03
 Amount: $83.63
 44
 Order date: 2007407429 15:52:42
 Amount: $423.26
 44
 Order date: 2007407429 01:42:22
 Amount: $134.52
 44
 Order date: 2007407429 01:40:52
 Amount: $183.56
 44
 Total: $867.75

3.13.1.2 Tasks

Tasks are small extensions to shells. They allow logic to be shared between shells, and are
added to shells by using the special $tasks class variable. For example in the core bake shell,
there are a number of tasks defined:

Tasks are stored in /vendors/shells/tasks/ in files named after their classes. So if we were to
create a new ‘cool’ task. Class CoolTask (which extends Shell) would be placed in /vendors/
shells/tasks/cool.php. Class VeryCoolTask (which extends Shell) would be placed in /
vendors/shells/tasks/very_cool.php.

Each task must at least implement an execute() method � shells will call this method to start
the task logic.

You can access tasks inside your shell classes and execute them there:

1. <?php
2. class SeaShell extends Shell { // found in /vendors/shells/sea.php
3. var $tasks = array('Sound'); //found in /vendors/shells/tasks/
sound.php
4. function main() {
5. $this4>Sound4>execute();
6. }
7. }
8. ?>

A method called “sound” in the SeaShell class would override the ability to access the
functionality in the Sound task specified in the $tasks array.

You can also access tasks directly from the command line:

$ cake sea sound

3.13.2 Running Shells as cronjobs

A common thing to do with a shell is making it run as a cronjob to clean up the database once
in a while or send newsletters. However, when you have added the console path to the PATH
variable via ~/.profile, it will be unavailable to the cronjob.

The following BASH script will call your shell and append the needed paths to $PATH. Copy
and save this to your vendors folder as 'cakeshell' and don't forget to make it executable.
(chmod +x cakeshell)

#!/bin/bash
cmd="cake"
while [$# 4ne 0]; do

if ["$1" = "4cli"] || ["$1" = "4console"]; then
PATH=$PATH:$2
shift

else
cmd="${cmd} $1"

fi
shift

done
$cmd

You can call it like:

$./vendors/cakeshell myshell myparam 4cli /usr/bin 4console /
cakes/1.2.x.x/cake/console

The 4cli parameter takes a path which points to the php cli executable and the 4console
parameter takes a path which points to the CakePHP console.

As a cronjob this would look like:

m h dom mon dow command
*/5 * * * * /full/path/to/cakeshell myshell myparam 4cli /usr/bin 4
console /cakes/1.2.x.x/cake/console 4app /full/path/to/app

1. // /app/plugins/pizza/pizza_app_controller.php:
2. <?php
3. class PizzaAppController extends AppController {
4. //...
5. }
6. ?>

1. // /app/plugins/pizza/pizza_app_model.php:
2. <?php
3. class PizzaAppModel extends AppModel {
4. //...
5. }
6. ?>

A simple trick to debug a crontab is to set it up to dump it's output to a logfile. You can do this
like:

m h dom mon dow command
*/5 * * * * /full/path/to/cakeshell myshell myparam 4cli /usr/bin 4
console /cakes/1.2.x.x/cake/console 4app /full/path/to/app >> /
path/to/log/file.log

3.14 Plugins

CakePHP allows you to set up a combination of controllers, models, and views and release
them as a packaged application plugin that others can use in their CakePHP applications.
Have a sweet user management module, simple blog, or web services module in one of your
applications? Package it as a CakePHP plugin so you can pop it into other applications.

The main tie between a plugin and the application it has been installed into, is the
application's configuration (database connection, etc.). Otherwise, it operates in its own little
space, behaving much like it would if it were an application on its own.

3.14.1 Creating a Plugin

As a working example, let's create a new plugin that orders pizza for you. To start out, we'll
need to place our plugin files inside the /app/plugins folder. The name of the parent folder for
all the plugin files is important, and will be used in many places, so pick wisely. For this
plugin, let's use the name 'pizza'. This is how the setup will eventually look:

/app
 /plugins
 /pizza
 /controllers <4 plugin controllers
go here
 /models <4 plugin models go
here
 /views <4 plugin views go here
 /pizza_app_controller.php <4 plugin's AppController
 /pizza_app_model.php <4 plugin's AppModel

If you want to be able to access your plugin with a URL, defining an AppController and
AppModel for a plugin is required. These two special classes are named after the plugin, and
extend the parent application's AppController and AppModel. Here's what they should look
like for our pizza example:

1. // /app/plugins/pizza/controllers/pizza_orders_controller.php
2. class PizzaOrdersController extends PizzaAppController {
3. var $name = 'PizzaOrders';
4. var $uses = array('Pizza.PizzaOrder');
5. function index() {
6. //...
7. }
8. }

1. // /app/plugins/pizza/models/pizza_order.php:
2. class PizzaOrder extends PizzaAppModel {
3. var $name = 'PizzaOrder';
4. }
5. ?>

If you forgot to define these special classes, CakePHP will hand you "Missing Controller" errors
until you’ve done so.

3.14.2 Plugin Controllers

Controllers for our pizza plugin will be stored in /app/plugins/pizza/controllers/. Since the
main thing we'll be tracking is pizza orders, we'll need an OrdersController for this plugin.

While it isn't required, it is recommended that you name your plugin controllers something
relatively unique in order to avoid namespace conflicts with parent applications. Its not a
stretch to think that a parent application might have a UsersController, OrdersController, or
ProductsController: so youmight want to be creative with controller names, or prepend the
name of the plugin to the classname (PizzaOrdersController, in this case).

So, we place our new PizzaOrdersController in /app/plugins/pizza/controllers and it looks like
so:

This controller extends the plugin's AppController (called PizzaAppController) rather than the
parent application's AppController.

Also note how the name of the model is prefixed with the name of the plugin. This line of code
is added for clarity but is not necessary for this example.

If you want to access what we’ve got going thus far, visit /pizza/pizza_orders. You should get a
“Missing Model” error because we don’t have a PizzaOrder model defined yet.

3.14.3 Plugin Models

Models for the plugin are stored in /app/plugins/pizza/models. We've already defined a
PizzaOrdersController for this plugin, so let's create the model for that controller, called
PizzaOrder. PizzaOrder is consistent with our previously defined naming scheme of pre�
pending all of our plugin classes with Pizza.

Visiting /pizza/pizzaOrders now (given you’ve got a table in your database called ‘pizza_
orders’) should give us a “Missing View” error. Let’s create that next.

If you need to reference a model within your plugin, you need to include the plugin name with
the model name, separated with a dot.

For example:

1. // /app/plugins/pizza/models/pizza_order.php:
2. class ExampleModel extends PizzaAppModel {
3. var $name = 'ExampleModel';
4. var $hasMany = array('Pizza.PizzaOrder');
5. }
6. ?>

1. // /app/plugins/pizza/models/pizza_order.php:
2. class ExampleModel extends PizzaAppModel {
3. var $name = 'ExampleModel';
4. var $hasMany = array(
5. 'PizzaOrder' => array(
6. 'className' => 'Pizza.PizzaOrder'
7.)
8.);
9. }
10. ?>

1. // /app/plugins/pizza/views/pizza_orders/index.ctp:
2. <h1>Order A Pizza</h1>
3. <p>Nothing goes better with Cake than a good pizza!</p>
4. <!44 An order form of some sort might go here....44>

1. // Component
2. class ExampleComponent extends Object {
3. }
4. // within your Plugin controllers:
5. var $components = array('Example');

1. var $components = array('PluginName.Example');
2. var $components = array('Pizza.Example'); // references ExampleComponent
in Pizza plugin.

If you would prefer that the array keys for the association not have the plugin prefix on them,
use the alternative syntax:

3.14.4 Plugin Views

Views behave exactly as they do in normal applications. Just place them in the right folder
inside of the /app/plugins/[plugin]/views/ folder. For our pizza ordering plugin, we'll need a
view for our PizzaOrdersController::index() action, so let's include that as well:

3.14.5 Components, Helpers and Behaviors

A plugin can have Components, Helpers and Behaviors just like a regular CakePHP
application. You can even create plugins that consist only of Components, Helpers or
Behaviors and can be a great way to build reusable components that can easily be dropped into
any project.

Building these components is exactly the same as building it within a regular application, with
no special naming convention. Referring to your components from within the plugin also does
not require any special reference.

To reference the Component from outside the plugin requires the plugin name to be referenced.

The same technique applies to Helpers and Behaviors.

1. <?php echo $html4>image('/your_plugin/img/my_image.png'); ?>
2.
3. <?php echo $html4>css('/your_plugin/css/my_css'); ?>
4.
5. <?php echo $javascript4>link('/your_plugin/js/do_cool_stuff'); ?>

3.14.6 Plugin Images, CSS and Javascript

You can include plugin specific Images, Javascript and CSS files in your plugins. These asset
files should be placed in your_plugin/vendors/img, your_plugin/vendors/css and
your_plugin/vendors/js respectively. They can be linked into your views with the core
helpers as well.

The above are examples of how to link to images, javascript and CSS files for your plugin.

It is important to note the /your_plugin/ prefix before the img, js or css path. That makes the
magic happen!

3.14.7 Plugin Tips

So, now that you've built everything, it should be ready to distribute (though we'd suggest you
also distribute a few extras like a readme or SQL file).

Once a plugin has been installed in /app/plugins, you can access it at the URL /pluginname/
controllername/action. In our pizza ordering plugin example, we'd access our
PizzaOrdersController at /pizza/pizzaOrders.

Some final tips on working with plugins in your CakePHP applications:

When you don't have a [Plugin]AppController and [Plugin]AppModel, you'll get
missing Controller errors when trying to access a plugin controller.
You can have a default controller with the name of your plugin. If you do that, you can
access it via /[plugin]/action. For example, a plugin named 'users' with a controller
named UsersController can be accessed at /users/add if there is no controller called
AddController in your [plugin]/controllers folder.
You can define your own layouts for plugins, inside app/plugin/views/layouts.
Otherwise, plugins will use the layouts from the /app/views/layouts folder by default.
You can do inter�plugin communication by using $this�>requestAction('/plugin/
controller/action'); in your controllers.
If you use requestAction, make sure controller andmodel names are as unique as
possible. Otherwise youmight get PHP "redefined class ..." errors.

3.15 Global Constants and Functions

While most of your day�to�day work in CakePHP will be utilizing core classes andmethods,
CakePHP features a number of global convenience functions that may come in handy. Many of
these functions are for use with CakePHP classes (loading model or component classes), but
many others make working with arrays or strings a little easier.

We’ll also cover some of the constants available in CakePHP applications. Using these
constants will help make upgrades more smooth, but are also convenient ways to point to
certain files or directories in your CakePHP application.

3.15.1 Global Functions

1. print_r(a('foo', 'bar'));
2. // output:
3. array(
4. [0] => 'foo',
5. [1] => 'bar'
6.)

1. echo aa('a','b');
2. // output:
3. array(
4. 'a' => 'b'
5.)

Here are CakePHP's globally available functions. Many of them are convenience wrappers for
long�named PHP functions, but some of them (like uses()) can be used to include code or
perform other useful functions. Chances are if you're constantly wanting a function to
accomplish an oft�used task, it's here.

3.15.1.1 __

__(string $string_id, boolean $return = false)

This function handles localization in CakePHP applications. The $string_id identifies the
ID for a translation, and the second parameter allows you to have the function automatically
echo the string (the default behavior), or return it for further processing (pass a boolean true to
enable this behavior).

Check out the Localization & Internationalization (http://book.cakephp.org/
view/161/localization+internationalizat) section for more information.

3.15.1.2 a

a(mixed $one, $two, $three...)

Returns an array of the parameters used to call the wrapping function.

3.15.1.3 aa

aa(string $one, $two, $three...)

Used to create associative arrays formed from the parameters used to call the wrapping
function.

3.15.1.4 am

am(array $one, $two, $three...)

Merges all the arrays passed as parameters and returns the merged array.

3.15.1.5 config

Can be used to load files from your application config�folder via include_once. Function
checks for existance before include and returns boolean. Takes an optional number of
arguments.

Example: config('some_file', 'myconfig');

3.15.1.6 convertSlash

convertSlash(string $string)

Converts forward slashes to underscores and removes the first and last underscores in a string.
Returns the converted string.

3.15.1.7 countdim

countdim(array $array)

Returns the number of dimensions in the supplied array.

3.15.1.8 debug

debug(mixed $var, boolean $showHtml = false)

If the application's DEBUG level is non�zero, $var is printed out. If $showHTML is true, the
data is rendered to be browser�friendly.

3.15.1.9 e

e(mixed $data)

Convenience wrapper for echo().

3.15.1.10 env

env(string $key)

Gets an environment variable from available sources. Used as a backup if $_SERVER or $_ENV
are disabled.

This function also emulates PHP_SELF and DOCUMENT_ROOT on unsupporting servers. In
fact, it's a good idea to always use env() instead of $_SERVER or getenv() (especially if you
plan to distribute the code), since it's a full emulation wrapper.

3.15.1.11 fileExistsInPath

fileExistsInPath(string $file)

Checks to make sure that the supplied file is within the current PHP include_path. Returns a
boolean result.

3.15.1.12 h

h(string $text, string $charset = null)

Convenience wrapper for htmlspecialchars().

3.15.1.13 ife

ife($condition, $ifNotEmpty, $ifEmpty)

Used for ternary�like operations. If the $condition is non�empty, $ifNotEmpty is
returned, else $ifEmpty is returned.

3.15.1.14 low

low(string $string)

Convenience wrapper for strtolower().

3.15.1.15 paths

paths()

Get CakePHP basic paths as an indexed array. Resulting array will contain array of paths
indexed by: Models, Behaviors, Controllers, Components, and Helpers.

This has been Deprecated and is no longer available in RC2. Use Configure::corePaths();
instead.

3.15.1.16 pr

pr(mixed $var)

Convenience wrapper for print_r(), with the addition of wrapping <pre> tags around the
output.

3.15.1.17 r

r(string $search, string $replace, string $subject)

Convenience wrapper for str_replace().

3.15.1.18 stripslashes_deep

stripslashes_deep(array $value)

Recursively strips slashes from the supplied $value. Returns the modified array.

3.15.1.19 up

up(string $string)

Convenience wrapper for strtoupper().

3.15.1.20 uses

uses(string $lib1, $lib2, $lib3...)

Used to load CakePHP's core libraries (found in cake/libs/). Supply the name of the
library's file name without the '.php' extension.

3.15.2 Core Definition Constants

constant Absolute path to the application’s...

APP root directory.

APP_PATH app directory.

CACHE cache files directory.

CAKE cake directory.

COMPONENTS components directory.

CONFIGS configuration files directory.

CONTROLLER_TESTScontroller tests directory.

CONTROLLERS controllers directory.

CSS CSS files directory.

DS Short for PHP's DIRECTORY_SEPARATOR, which is / on Linux and
\ on windows.

ELEMENTS elements directory.

HELPER_TESTS helper tests directory.

HELPERS helpers directory.

IMAGES images directory.

INFLECTIONS inflections directory (usually inside the configuration directory).

JS JavaScript files directory (in the webroot).

LAYOUTS layouts directory.

LIB_TESTS CakePHP Library tests directory.

LIBS CakePHP libs directory.

LOGS logs directory (in app).

MODEL_TESTS model tests directory.

MODELS models directory.

SCRIPTS Cake scripts directory.

TESTS tests directory (parent for the models, controllers, etc. test directories)

TMP tmp directory.

VENDORS vendors directory.

VIEWS views directory.

WWW_ROOT full path to the webroot.

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $validate = array();
5. }
6. ?>

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $validate = array(
5. 'login' => 'alphaNumeric',
6. 'email' => 'email',
7. 'born' => 'date'
8.);
9. }
10. ?>

4 Common Tasks With CakePHP

4.1 Data Validation

Data validation is an important part of any application, as it helps to make sure that the data in
a Model conforms to the business rules of the application. For example, youmight want to
make sure that passwords are at least eight characters long, or ensure that usernames are
unique. Defining validation rules makes form handling much, much easier.

There are many different aspects to the validation process. What we’ll cover in this section is
the model side of things. Essentially: what happens when you call the save() method of your
model. For more information about how to handle the displaying of validation errors, check
out the section covering FormHelper (http://book.cakephp.org/view/182/Form) .

The first step to data validation is creating the validation rules in the Model. To do that, use the
Model::validate array in the Model definition, for example:

In the example above, the $validate array is added to the User Model, but the array contains no
validation rules. Assuming that the users table has login, password, email and born fields, the
example below shows some simple validation rules that apply to those fields:

This last example shows how validation rules can be added to model fields. For the login field,
only letters and numbers will be accepted, the email should be valid, and born should be a valid
date. Defining validation rules enables CakePHP’s automagic showing of error messages in
forms if the data submitted does not follow the defined rules.

CakePHP has many validation rules and using them can be quite easy. Some of the built�in
rules allow you to verify the formatting of emails, URLs, and credit card numbers – but we’ll
cover these in detail later on.

Here is a more complex validation example that takes advantage of some of these built�in
validation rules:

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4. var $validate = array(
5. 'login' => array(
6. 'alphaNumeric' => array(
7. 'rule' => 'alphaNumeric',
8. 'required' => true,
9. 'message' => 'Alphabets and numbers only'
10.),
11. 'between' => array(
12. 'rule' => array('between', 5, 15),
13. 'message' => 'Between 5 to 15 characters'
14.)
15.),
16. 'password' => array(
17. 'rule' => array('minLength', '8'),
18. 'message' => 'Mimimum 8 characters long'
19.),
20. 'email' => 'email',
21. 'born' => array(
22. 'rule' => 'date',
23. 'message' => 'Enter a valid date',
24. 'allowEmpty' => true
25.)
26.);
27. }
28. ?>

1. var $validate = array('fieldName' => 'ruleName');

1. var $validate = array('user_email' => 'email');

Two validation rules are defined for login: it should contain letters and numbers only, and its
length should be between 5 and 15. The password field should be a minimum of 8 characters
long. The email should be a valid email address, and born should be a valid date. Also, notice
how you can define specific error messages that CakePHP will use when these validation rules
fail.

As the example above shows, a single field can have multiple validation rules. And if the built�
in rules do not match your criteria, you can always add your own validation rules as required.

Now that you’ve seen the big picture on how validation works, let’s look at how these rules are
defined in the model. There are three different ways that you can define validation rules: simple
arrays, single rule per field, andmultiple rules per field.

4.1.1 Simple Rules

As the name suggests, this is the simplest way to define a validation rule. The general syntax
for defining rules this way is:

Where, 'fieldName' is the name of the field the rule is defined for, and ‘ruleName’ is a pre�
defined rule name, such as 'alphaNumeric', 'email' or 'isUnique'.

For example, to ensure that the user is giving a well formatted email address, you could use this
rule:

1. var $validate = array(
2. 'fieldName1' => array(
3. 'rule' => 'ruleName', // or: array('ruleName', 'param1',
'param2' ...)
4. 'required' => true,
5. 'allowEmpty' => false,
6. 'on' => 'create', // or: 'update'
7. 'message' => 'Your Error Message'
8.)
9.);

1. var $validate = array(
2. 'login' => array(
3. 'rule' => 'alphaNumeric'
4.)
5.);

1. var $validate = array(
2. 'password' => array(
3. 'rule' => array('minLength', 8)
4.)
5.);

4.1.2 One Rule Per Field

This definition technique allows for better control of how the validation rules work. But before
we discuss that, let’s see the general usage pattern adding a rule for a single field:

The 'rule' key is required. If you only set 'required' => true, the form validation will not function
correctly. This is because 'required' is not actually a rule.

As you can see here, each field (only one field shown above) is associated with an array that
contains five keys: ‘rule’, ‘required’, ‘allowEmpty’, ‘on’ and ‘message’. Let’s have a closer look at
these keys.

4.1.2.1 rule

The 'rule' key defines the validation method and takes either a single value or an array. The
specified 'rule' may be the name of a method in your model, a method of the core Validation
class, or a regular expression. For more information on the rules available by default, see Core
Validation Rules (http://book.cakephp.org/view/134/Core+Validation+Rules) .

If the rule does not require any parameters, 'rule' can be a single value e.g.:

If the rule requires some parameters (like the max, min or range), 'rule' should be an array:

Remember, the 'rule' key is required for array�based rule definitions.

4.1.2.2 required

This key should be assigned to a boolean value. If ‘required’ is true, the field must be present in
the data array. For example, if the validation rule has been defined as follows:

1. var $validate = array(
2. 'login' => array(
3. 'rule' => 'alphaNumeric',
4. 'required' => true
5.)
6.);

1. var $validate = array(
2. 'password' => array(
3. 'rule' => array('minLength', 8),
4. 'message' => 'Password must be at least 8 characters long'
5.)
6.);

The data sent to the model’s save() methodmust contain data for the login field. If it doesn’t,
validation will fail. The default value for this key is boolean false.

required => true does not mean the same as the validation rule notEmpty().
required => true indicates that the array keymust be present � it does not mean it must
have a value. Therefore validation will fail if the field is not present in the dataset, but may
(depending on the rule) succeed if the value submitted is empty ('').

4.1.2.3 allowEmpty

If set to false, the field value must be "nonempty", where "nonempty" is defined as !empty($
value) || is_numeric($value). The numeric check is so that CakePHP does the right
thing when $value is zero.

The difference between required and allowEmpty can be confusing. 'required' =>
truemeans that you cannot save the model without the key for this field being present in $
this4>data (the check is performed with isset); whereas, 'allowEmpty' => false
makes sure that the current field value is "nonempty", as described above.

4.1.2.4 on

The ‘on’ key can be set to either one of the following values: ‘update’ or ‘create’. This provides a
mechanism that allows a certain rule to be applied either during the creation of a new record,
or during update of a record.

If a rule has defined ‘on’ => ‘create’, the rule will only be enforced during the creation of a new
record. Likewise, if it is defined as ‘on’ => ‘update’, it will only be enforced during the updating
of a record.

The default value for ‘on’ is null. When ‘on’ is null, the rule will be enforced during both
creation and update.

4.1.2.5 message

The ‘message’ key allows you to define a custom validation error message for the rule:

1.
2. var $validate = array(
3. 'fieldName' => array(
4. 'ruleName' => array(
5. 'rule' => 'ruleName',
6. // extra keys like on, required, etc. go here...
7.),
8. 'ruleName2' => array(
9. 'rule' => 'ruleName2',
10. // extra keys like on, required, etc. go here...
11.)
12.)
13.);

1. var $validate = array(
2. 'login' => array(
3. 'loginRule41' => array(
4. 'rule' => 'alphaNumeric',
5. 'message' => 'Only alphabets and numbers allowed',
6. 'last' => true
7.),
8. 'loginRule42' => array(
9. 'rule' => array('minLength', 8),
10. 'message' => 'Minimum length of 8 characters'
11.),
12.)
13.);

4.1.3 Multiple Rules per Field

The technique outlined above gives us much more flexibility than simple rules assignment, but
there’s an extra step we can take in order to gain more fine�grained control of data validation.
The next technique we’ll outline allows us to assign multiple validation rules per model field.

If you would like to assign multiple validation rules to a single field, this is basically how it
should look:

As you can see, this is quite similar to what we did in the previous section. There, for each field
we had only one array of validation parameters. In this case, each ‘fieldName’ consists of an
array of rule indices. Each ‘ruleName’ contains a separate array of validation parameters.

This is better explained with a practical example:

The above example defines two rules for the login field: loginRule�1 and loginRule�2. As you
can see, each rule is identified with an arbitrary name.

By default CakePHP tries to validate a field using all the validation rules declared for it and
returns the error message for the last failing rule. But if the key last is set to true for a rule
and it fails, then the error message for that rule is returned and further rules are not validated.
So if you prefer to show the error message for the first failing rule then set 'last' => true
for each rule.

If you plan on using internationalized error messages, youmay want to specify error messages
in your view instead:

1. echo $form4>input('login', array(
2. 'label' => __('Login', true),
3. 'error' => array(
4. 'loginRule41' => __('Only alphabets and numbers allowed',
true),
5. 'loginRule42' => __('Minimum length of 8 characters', true)
6.)
7.)
8.);

1. var $validate = array(
2. 'login' => array(
3. 'rule' => 'alphaNumeric',
4. 'message' => 'Usernames must only contain letters and numbers.'
5.)
6.);

1. var $validate = array(
2. 'password' => array(
3. 'rule' => array('between', 5, 15),
4. 'message' => 'Passwords must be between 5 and 15 characters
long.'
5.)
6.);

The field is now fully internationalized, and you are able to remove the messages from the
model. For more information on the __() function, see "Localization & Internationalization"

4.1.4 Core Validation Rules

The Validation class in CakePHP contains many validation rules that can make model data
validation much easier. This class contains many oft�used validation techniques you won’t
need to write on your own. Below, you'll find a complete list of all the rules, along with usage
examples.

4.1.4.1 alphaNumeric

The data for the field must only contain letters and numbers.

4.1.4.2 between

The length of the data for the field must fall within the specified numeric range. Both minimum
andmaximum values must be supplied. Uses <= not < .

The length of data is "the number of bytes in the string representation of the data". Be careful
that it may be larger than the number of characters when handling non�ASCII characters.

4.1.4.3 blank

This rule is used to make sure that the field is left blank or only white space characters are
present in its value. White space characters include space, tab, carriage return, and newline.

1. var $validate = array(
2. 'id' => array(
3. 'rule' => 'blank',
4. 'on' => 'create'
5.)
6.);

1. var $validate = array(
2. 'myCheckbox' => array(
3. 'rule' => array('boolean'),
4. 'message' => 'Incorrect value for myCheckbox'
5.)
6.);

4.1.4.4 boolean

The data for the field must be a boolean value. Valid values are true or false, integers 0 or 1 or
strings '0' or '1'.

4.1.4.5 cc

This rule is used to check whether the data is a valid credit card number. It takes three
parameters: ‘type’, ‘deep’ and ‘regex’.

The ‘type’ key can be assigned to the values of ‘fast’, ‘all’ or any of the following:

amex
bankcard
diners
disc
electron
enroute
jcb
maestro
mc
solo
switch
visa
voyager

If ‘type’ is set to ‘fast’, it validates the data against the major credit cards’ numbering formats.
Setting ‘type’ to ‘all’ will check with all the credit card types. You can also set ‘type’ to an array
of the types you wish to match.

The ‘deep’ key should be set to a boolean value. If it is set to true, the validation will check the
Luhn algorithm of the credit card (http://en.wikipedia.org/wiki/Luhn_algorithm
(http://en.wikipedia.org/wiki/Luhn_algorithm)). It defaults to false.

The ‘regex’ key allows you to supply your own regular expression that will be used to validate
the credit card number.

1. var $validate = array(
2. 'ccnumber' => array(
3. 'rule' => array('cc', array('visa', 'maestro'), false, null),
4. 'message' => 'The credit card number you supplied was invalid.'
5.)
6.);

1. var $validate = array(
2. 'age' => array(
3. 'rule' => array('comparison', '>=', 18),
4. 'message' => 'Must be at least 18 years old to qualify.'
5.)
6.);
7. var $validate = array(
8. 'age' => array(
9. 'rule' => array('comparison', 'greater or equal', 18),
10. 'message' => 'Must be at least 18 years old to qualify.'
11.)
12.);

1. var $validate = array(
2. 'born' => array(
3. 'rule' => 'date',
4. 'message' => 'Enter a valid date in YY4MM4DD format.',
5. 'allowEmpty' => true
6.)
7.);

4.1.4.6 comparison

Comparison is used to compare numeric values. It supports “is greater”, “is less”, “greater or
equal”, “less or equal”, “is less”, “equal to”, and “not equal”. Some examples are shown below:

4.1.4.7 date

This rule ensures that data is submitted in valid date formats. A single parameter (which can
be an array) can be passed that will be used to check the format of the supplied date. The value
of the parameter can be one of the following:

‘dmy’ e.g. 27�12�2006 or 27�12�06 (separators can be a space, period, dash, forward
slash)
‘mdy’ e.g. 12�27�2006 or 12�27�06 (separators can be a space, period, dash, forward
slash)
‘ymd’ e.g. 2006�12�27 or 06�12�27 (separators can be a space, period, dash, forward
slash)
‘dMy’ e.g. 27 December 2006 or 27 Dec 2006
‘Mdy’ e.g. December 27, 2006 or Dec 27, 2006 (comma is optional)
‘My’ e.g. (December 2006 or Dec 2006)
‘my’ e.g. 12/2006 or 12/06 (separators can be a space, period, dash, forward slash)

If no keys are supplied, the default key that will be used is ‘ymd’.

1. var $validate = array(
2. 'price' => array(
3. 'rule' => array('decimal', 2)
4.)
5.);

1. var $validate = array('email' => array('rule' => 'email'));
2.
3. var $validate = array(
4. 'email' => array(
5. 'rule' => array('email', true),
6. 'message' => 'Please supply a valid email address.'
7.)
8.);

1. var $validate = array(
2. 'food' => array(
3. 'rule' => array('equalTo', 'cake'),
4. 'message' => 'This value must be the string cake'
5.)
6.);

While many data stores require a certain date format, youmight consider doing the heavy
lifting by accepting a wide�array of date formats and trying to convert them, rather than forcing
users to supply a given format. The more work you can do for your users, the better.

4.1.4.8 decimal

This rule ensures that the data is a valid decimal number. A parameter can be passed to specify
the number of digits required after the decimal point. If no parameter is passed, the data will be
validated as a scientific float, which will cause validation to fail if no digits are found after the
decimal point.

4.1.4.9 email

This checks whether the data is a valid email address. Passing a boolean true as the second
parameter for this rule will also attempt to verify that the host for the address is valid.

4.1.4.10 equalTo

This rule will ensure that the value is equal to, and of the same type as the given value.

4.1.4.11 extension

This rule checks for valid file extensions like .jpg or .png. Allow multiple extensions by passing
them in array form.

1. var $validate = array(
2. 'image' => array(
3. 'rule' => array('extension', array('gif', 'jpeg', 'png', 'jpg')),
4. 'message' => 'Please supply a valid image.'
5.)
6.);

1. var $validate = array(
2. 'clientip' => array(
3. 'rule' => 'ip',
4. 'message' => 'Please supply a valid IP address.'
5.)
6.);

1. var $validate = array(
2. 'login' => array(
3. 'rule' => 'isUnique',
4. 'message' => 'This username has already been taken.'
5.)
6.);

1. var $validate = array(
2. 'login' => array(
3. 'rule' => array('minLength', 8),
4. 'message' => 'Usernames must be at least 8 characters long.'
5.)
6.);

4.1.4.12 file

This section has yet to be written, if you have an idea of what to put here please use the links
and let us know your suggestion!

4.1.4.13 ip

This rule will ensure that a valid IPv4 address has been submitted.

4.1.4.14 isUnique

The data for the field must be unique, it cannot be used by any other rows.

4.1.4.15 minLength

This rule ensures that the data meets a minimum length requirement.

The length here is "the number of bytes in the string representation of the data". Be careful that
it may be larger than the number of characters when handling non�ASCII characters.

1. var $validate = array(
2. 'login' => array(
3. 'rule' => array('maxLength', 15),
4. 'message' => 'Usernames must be no larger than 15 characters
long.'
5.)
6.);

1. var $validate = array(
2. 'salary' => array(
3. 'rule' => array('money', 'left'),
4. 'message' => 'Please supply a valid monetary amount.'
5.)
6.);

1. var $validate = array(
2. 'multiple' => array(
3. 'rule' => array('multiple', array('in' => array('do', 'ray',
'me', 'fa', 'so', 'la', 'ti'), 'min' => 1, 'max' => 3)),
4. 'message' => 'Please select one, two or three options'
5.)
6.);

4.1.4.16 maxLength

This rule ensures that the data stays within a maximum length requirement.

4.1.4.17 money

This rule will ensure that the value is in a valid monetary amount.

Second parameter defines where symbol is located (left/right).

4.1.4.18 multiple

Use this for validating a multiple select input. It supports parameters "in", "max" and "min".

4.1.4.19 inList

This rule will ensure that the value is in a given set. It needs an array of values. The field is
valid if the field's value matches one of the values in the given array.

Example:

1. var $validate = array(
2. 'function' => array(
3. 'allowedChoice' => array(
4. 'rule' => array('inList', array('Foo', 'Bar')),
5. 'message' => 'Enter either Foo or Bar.'
6.)
7.)
8.);

1. var $validate = array(
2. 'cars' => array(
3. 'rule' => 'numeric',
4. 'message' => 'Please supply the number of cars.'
5.)
6.);

1. var $validate = array(
2. 'title' => array(
3. 'rule' => 'notEmpty',
4. 'message' => 'This field cannot be left blank'
5.)
6.);

1. var $validate = array(
2. 'phone' => array(
3. 'rule' => array('phone', null, 'us')
4.)
5.);

4.1.4.20 numeric

Checks if the data passed is a valid number.

4.1.4.21 notEmpty

The basic rule to ensure that a field is not empty.

Do not use this for a multiple select input as it will cause an error. Instead, use "multiple".

4.1.4.22 phone

Phone validates US phone numbers. If you want to validate non�US phone numbers, you can
provide a regular expression as the second parameter to cover additional number formats.

4.1.4.23 postal

Postal is used to validate ZIP codes from the U.S. (us), Canada (ca), U.K (uk), Italy (it),
Germany (de) and Belgium (be). For other ZIP code formats, youmay provide a regular
expression as the second parameter.

1. var $validate = array(
2. 'zipcode' => array(
3. 'rule' => array('postal', null, 'us')
4.)
5.);

1. var $validate = array(
2. 'number' => array(
3. 'rule' => array('range', 0, 10),
4. 'message' => 'Please enter a number between 0 and 10'
5.)
6.);

1. var $validate = array(
2. 'ssn' => array(
3. 'rule' => array('ssn', null, 'us')
4.)
5.);

1. var $validate = array(
2. 'website' => array(
3. 'rule' => 'url'
4.)
5.);

1. var $validate = array(
2. 'website' => array(
3. 'rule' => array('url', true)
4.)
5.);

4.1.4.24 range

This rule ensures that the value is in a given range. If no range is supplied, the rule will check
to ensure the value is a legal finite on the current platform.

The above example will accept any value which is larger than 0 (e.g., 0.01) and less than 10
(e.g., 9.99).

4.1.4.25 ssn

Ssn validates social security numbers from the U.S. (us), Denmark (dk), and the Netherlands
(nl). For other social security number formats, youmay provide a regular expression.

4.1.4.26 url

This rule checks for valid URL formats. Supports http(s), ftp(s), file, news, and gopher
protocols.

To ensure that a protocol is in the url, strict mode can be enabled like so.

1. var $validate = array(
2. 'login' => array(
3. 'rule' => array('custom', '/^[a4z049]{3,}$/i'),
4. 'message' => 'Only letters and integers, min 3 characters'
5.)
6.);

1. <?php
2. class User extends AppModel {
3. var $name = 'User';
4.
5. var $validate = array(
6. 'promotion_code' => array(
7. 'rule' => array('limitDuplicates', 25),
8. 'message' => 'This code has been used too many times.'
9.)
10.);
11.
12. function limitDuplicates($data, $limit){
13. $existing_promo_count = $this4>find('count', array
('conditions' => $data, 'recursive' => 41));
14. return $existing_promo_count < $limit;
15. }
16. }
17. ?>

4.1.5 Custom Validation Rules

If you haven’t found what you need thus far, you can always create your own validation rules.
There are two ways you can do this: by defining custom regular expressions, or by creating
custom validation methods.

4.1.5.1 Custom Regular Expression Validation

If the validation technique you need to use can be completed by using regular expression
matching, you can define a custom expression as a field validation rule.

The example above checks if the login contains only letters and integers, with a minimum of
three characters.

4.1.5.2 Adding your own Validation Methods

Sometimes checking data with regular expression patterns is not enough. For example, if you
want to ensure that a promotional code can only be used 25 times, you need to add your own
validation function, as shown below:

If you want to pass parameters to your validation function, add extra elements onto the ‘rule’
array, and handle them as extra params (after the main $data param) in your function.

Your validation function can be in the model (as in the example above), or in a behavior that
the model implements. This includes mappedmethods.

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4.
5. var $validate = array(
6. 'slug' => array(
7. 'rule' => 'alphaNumericDashUnderscore',
8. 'message' => 'Slug can only be letters, numbers, dash and
underscore'
9.)
10.);
11.
12. function alphaNumericDashUnderscore($data) {
13. // $data array is passed using the form field name as the key
14. // have to extract the value to make the function generic
15. $value = array_values($data);
16. $value = $value[0];
17.
18. return preg_match('|^[049a4zA4Z_4]*$|', $value);
19. }
20. }
21. ?>

1. $this4>ModelName4>set($this4>data);

1. if ($this4>ModelName4>validates()) {
2. // it validated logic
3. } else {
4. // didn't validate logic
5. }

1. $errors = $this4>ModelName4>invalidFields(); // contains
validationErrors array

Model/behavior methods are checked first, before looking for a method on the Validation
class. This means that you can override existing validation methods (such as alphaNumeric
()) at an application level (by adding the method to AppModel), or at model level.

When writing a validation rule which can be used by multiple fields, take care to extract the
field value from the $data array. The $data array is passed with the form field name as its key
and the field value as its value.

4.1.6 Validating Data from the Controller

While normally you would just use the save method of the model, there may be times where you
wish to validate the data without saving it. For example, youmay wish to display some
additional information to the user before actually saving the data to the database. Validating
data requires a slightly different process than just saving the data.

First, set the data to the model:

Then, to check if the data validates, use the validates method of the model, which will return
true if it validates and false if it doesn't:

The validates method invokes the invalidFields method which populates the validationErrors
property of the model. The invalidFields method also returns that data as the result.

1. if ($this4>Model4>saveAll($this4>data, array('validate' => 'only'))) {
2. // validates
3. } else {
4. // does not validate
5. }

1. if ($this4>Model4>saveAll($this4>data, array('validate' => false))) {
2. // saving wihout validation
3. }

1. App::import('Sanitize');

1. $badString = ";:<script><html>< // >@@#";
2. echo Sanitize::paranoid($badString);
3. // output: scripthtml
4. echo Sanitize::paranoid($badString, array(' ', '@'));
5. // output: scripthtml @@

It is important to note that the data must be set to the model before the data can be validated.
This is different from the save method which allows the data to be passed in as a parameter.
Also, keep in mind that it is not required to call validates prior to calling save as save will
automatically validate the data before actually saving.

To validate multiple models, the following approach should be used:

If you have validated data before save, you can turn off validation to avoid second check.

4.2 Data Sanitization

The CakePHP Sanitize class can be used to rid user�submitted data of malicious data and other
unwanted information. Sanitize is a core library, so it can be used anywhere inside of your
code, but is probably best used in controllers or models.

All you need to do is include the Sanitize core library:

Once you've done that, you can make calls to Sanitize statically.

4.2.1 paranoid

paranoid(string $string, array $allowedChars);

This function strips anything out of the target $string that is not a plain�jane alphanumeric
character. The function will overlook certain characters by passing them in $allowedChars
array.

4.2.2 html

html(string $string, boolean $remove = false)

This method prepares user�submitted data for display inside HTML. This is especially useful if
you don't want users to be able to break your layouts or insert images or scripts inside of your
HTML pages. If the $remove option is set to true, HTML content detected is removed rather
than rendered as HTML entities.

1. $badString = 'HEY<script>...</
script>';
2. echo Sanitize::html($badString);
3. //
output: <font size="99"
color="#FF0000">HEY<script>...</
script>
4. echo Sanitize::html($badString, true);
5. // output: HEY...

1. $this4>data = Sanitize::clean($this4>data, array('encode' => false));

4.2.3 escape

escape(string $string, string $connection)

Used to escape SQL statements by adding slashes, depending on the system's current magic_
quotes_gpc setting. $connection is the name of the database to quote the string for, as named
in your app/config/database.php file.

4.2.4 clean

Sanitize::clean(mixed $data, mixed $options)

This function is an industrial�strength, multi�purpose cleaner, meant to be used on entire
arrays (like $this�>data, for example). The function takes an array (or string) and returns the
clean version. The following cleaning operations are performed on each element in the array
(recursively):

Odd spaces (including 0xCA) are replaced with regular spaces.
Double�checking special chars and removal of carriage returns for increased SQL
security.
Adding of slashes for SQL (just calls the sql function outlined above).
Swapping of user�inputted backslashes with trusted backslashes.

The $options argument can either be a string or an array. When a string is provided it's the
database connection name. If an array is provided it will be merged with the following options:

connection
odd_spaces
encode
dollar
carriage
unicode
escape
backslash

Usage of clean() with options looks something like the following:

4.3 Error Handling

In the event of an unrecoverable error in your application, it is common to stop processing and
show an error page to the user. To save you from having to code error handling for this in each
of your controllers and components, you can use the providedmethod:

$this4>cakeError(string $errorType [, array $parameters]);

1. $this4>cakeError('error404');

1. $this4>cakeError('error404', array('url' => 'some/other.url'));

1. <?php
2. class AppError extends ErrorHandler {
3. }
4. ?>

1. function cannotWriteFile($params) {
2. $this4>controller4>set('file', $params['file']);
3. $this4>_outputMessage('cannot_write_file');
4. }

1. <h2>Unable to write file</h2>
2. <p>Could not write file <?php echo $file ?> to the disk.</p>

1. $this4>cakeError('cannotWriteFile', array('file'=>'somefilename'));

Calling this method will show an error page to the user and halt any further processing in your
application.

parametersmust be an array of strings. If the array contains objects (including Exception
objects), they will be cast into strings.

CakePHP pre�defines a set of error�types, but at the time of writing, most are only really useful
by the framework itself. One that is more useful to the application developer is the good old 404
error. This can be called with no parameters as follows:

Or alternatively, you can cause the page to report the error was at a specific URL by passing the
url parameter:

This all starts being a lot more useful by extending the error handler to use your own error�
types. Application error handlers are largely like controller actions; You typically will set() any
passed parameters to be available to the view and then render a view file from your app/
views/errors directory.

Create a file app/app_error.php with the following definition.

Handlers for new error�types can be implemented by adding methods to this class. Simply
create a new method with the name you want to use as your error�type.

Let's say we have an application that writes a number of files to disk and that it is appropriate
to report write errors to the user. We don't want to add code for this all over the different parts
of our application, so this is a great case for using a new error type.

Add a new method to your AppError class. We'll take one parameter called file that will be
the path to the file we failed to write.

Create the view in app/views/errors/cannot_write_file.ctp

and throw the error in your controller/component

The default implementation of $this4>_outputMessage(<view4filename>) will just
display the view in views/errors/<view4filename>.ctp. If you wish to override this
behaviour, you can redefine _outputMessage($template) in your AppError class.

4.4 Debugging

1. $foo = array(1,2,3);
2.
3. Debugger::dump($foo);
4.
5. //outputs
6. array(
7. 1,
8. 2,
9. 3
10.)
11.
12. //simple object
13. $car = new Car();
14.
15. Debugger::dump($car);
16.
17. //outputs
18. Car::
19. Car::colour = 'red'
20. Car::make = 'Toyota'
21. Car::model = 'Camry'
22. Car::mileage = '15000'
23. Car::acclerate()
24. Car::decelerate()
25. Car::stop()

Debugging is an inevitable and necessary part of any development cycle. While CakePHP
doesn't offer any tools that directly connect with any IDE or editor, CakePHP does provide
several tools to assist in debugging and exposing what is running under the hood of your
application.

4.4.1 Basic Debugging

debug($var, $showHTML = false, $showFrom = true)

The debug() function is a globally available function that works similarly to the PHP function
print_r(). The debug() function allows you to show the contents of a variable in a number of
different ways. First, if you'd like data to be shown in an HTML�friendly way, set the second
parameter to true. The function also prints out the line and file it is originating from by default.

Output from this function is only shown if the core debug variable has been set to a value
greater than 0.

4.4.2 Using the Debugger Class

To use the debugger, first ensure that Configure::read('debug') is set to a value greater than 0.

dump($var)

Dump prints out the contents of a variable. It will print out all properties andmethods (if any)
of the supplied variable.

log($var, $level = 7)

Creates a detailed stack trace log at the time of invocation. The log() method prints out data
similar to that done by Debugger::dump(), but to the debug.log instead of the output buffer.

1. //In PostsController::index()
2. pr(Debugger::trace());
3.
4. //outputs
5. PostsController::index() 4 APP/controllers/downloads_controller.php,
line 48
6. Dispatcher::_invoke() 4 CORE/cake/dispatcher.php, line 265
7. Dispatcher::dispatch() 4 CORE/cake/dispatcher.php, line 237
8. [main] 4 APP/webroot/index.php, line 84

1. pr(Debugger::excerpt(ROOT.DS.LIBS.'debugger.php', 321, 2));
2.
3. //will output the following.
4. Array
5. (
6. [0] => <code> * @access public</
span></code>
7. [1] => <code> */</code>
8. [2] => <code> function excerpt($
file, $line, $context = 2) {</code>
9. [3] => <code><span style="color: #
000000"> $data = $lines = array();</code>
10. [4] => <code> $data = @
explode("\n", file_get_contents($file));</code>
11.)

Note your app/tmp directory (and its contents) must be writable by the web server for log() to
work correctly.

trace($options)

Returns the current stack trace. Each line of the trace includes the calling method, including
which file and line the call originated from.

Above is the stack trace generated by calling Debugger::trace() in a controller action. Reading
the stack trace bottom to top shows the order of currently running functions (stack frames). In
the above example, index.php called Dispatcher::dispatch(), which in�turn called
Dispatcher::_invoke(). The _invoke() method then called PostsController::index(). This
information is useful when working with recursive operations or deep stacks, as it identifies
which functions are currently running at the time of the trace().

excerpt($file, $line, $context)

Grab an excerpt from the file at $path (which is an absolute filepath), highlights line number $
line with $context number of lines around it.

Although this method is used internally, it can be handy if you're creating your own error
messages or log entries for custom situations.

exportVar($var, $recursion = 0)

Converts a variable of any type to a string for use in debug output. This method is also used by
most of Debugger for internal variable conversions, and can be used in your own Debuggers as
well.

invoke($debugger)

Replace the CakePHP Debugger with a new Error Handler.

1. //Executing this inside a CakePHP class:
2.
3. $this4>log("Something didn't work!");
4.
5. //Results in this being appended to app/tmp/logs/error.log
6.
7. 2007411402 10:22:02 Error: Something didnt work!

4.4.3 Debugger Class

The debugger class is new in CakePHP 1.2 and offers even more options for obtaining
debugging information. It has several functions which are invoked statically, and provide
dumping, logging, and error handling functions.

The Debugger Class overrides PHP's default error handling, replacing it with far more useful
error reports. The Debugger's error handling is used by default in CakePHP. As with all
debugging functions, Configure::debug must be set to a value higher than 0.

When an error is raised, Debugger both outputs information to the page andmakes an entry in
the error.log file. The error report that is generated has both a stack trace and a code excerpt
from where the error was raised. Click on the "Error" link type to reveal the stack trace, and on
the "Code" link to reveal the error�causing lines.

4.5 Caching

Caching can be made use of on various levels within a CakePHP application. See how to
disable browser caching (http://book.cakephp.org/view/431/disablecache) , full
page or element caching (http://book.cakephp.org/view/213/cache) , per+request
query caching (http://book.cakephp.org/view/445/cachequeries) or the cache
function + to cache anything. (http://book.cakephp.org/view/764/Cache) for more
info.

4.6 Logging

While CakePHP core Configure Class settings can really help you see what's happening under
the hood, there are certain times that you'll need to log data to the disk in order to find out
what's going on. In a world that is becoming more dependent on technologies like SOAP and
AJAX, debugging can be rather difficult.

Logging can also be a way to find out what's been going on in your application over time. What
search terms are being used? What sorts of errors are my users being shown? How often is a
particular query being executed?

Logging data in CakePHP is easy � the log() function is a part of the Object class, which is the
common ancestor for almost all CakePHP classes. If the context is a CakePHP class (Model,
Controller, Component... almost anything), you can log your data.

4.6.1 Using the log function

The log() function takes two parameters. The first is the message you'd like written to the log
file. By default, this error message is written to the error log found in app/tmp/logs/error.log.

The second parameter is used to define the log type you wish to write the message to. If not
supplied, it defaults to LOG_ERROR, which writes to the error log previously mentioned. You
can set this second parameter to LOG_DEBUG to write your messages to an alternate debug
log found at app/tmp/logs/debug.log:

1. //Executing this inside a CakePHP class:
2.
3. $this4>log('A debugging message.', LOG_DEBUG);
4.
5. //Results in this being appended to app/tmp/logs/debug.log (rather than
error.log)
6.
7. 2007411402 10:22:02 Error: A debugging message.

1. //Executing this inside a CakePHP class:
2.
3. $this4>log('A special message for activity logging', 'activity');
4.
5. //Results in this being appended to app/tmp/logs/activity.log (rather
than error.log)
6.
7. 2007411402 10:22:02 Activity: A special message for activity logging

You can also specify a different name for the log file, by setting the second parameter to the
name of the file.

Your app/tmp directory must be writable by the web server user in order for logging to work
correctly.

4.7 Testing

As of CakePHP 1.2 there is support for a comprehensive testing framework built into CakePHP.
The framework is an extension of the SimpleTest framework for PHP. This section will discuss
how to prepare for testing and how to build and run your tests.

4.7.1 Preparing for testing

Ready to start testing? Good! Lets get going then!

4.7.1.1 Installing SimpleTest

The testing framework provided with CakePHP 1.2 is built upon the SimpleTest testing
framework. SimpleTest is not shipped with the default CakePHP installation, so we need to
download it first. You can find it here: http://simpletest.sourceforge.net/ (http://
simpletest.sourceforge.net/) .

Fetch the latest version, and unzip the code to your vendors folder, or your app/vendors
folder, depending on your preference. You should now have a vendors/simpletest
directory with all SimpleTest files and folders inside. Remember to have a DEBUG level of at
least 1 in your app/config/core.php file before running any tests!

If you have no test database connection defined in your app/config/database.php, test
tables will be created with a test_suite_ prefix. You can create a $test database
connection to contain any test tables like the one below:

1. var $test = array(
2. 'driver' => 'mysql',
3. 'persistent' => false,
4. 'host' => 'dbhost',
5. 'login' => 'dblogin',
6. 'password' => 'dbpassword',
7. 'database' => 'databaseName'
8.);

If the test database is available and CakePHP can connect to it, all tables will be created in this
database.

4.7.1.2 Running Core test cases

The release packages of CakePHP 1.2 do not ship with the core test cases. In order to get these
tests, you need to download a nightly package from the website http://cakephp.org/
downloads/nightly/1.2.x.x (http://cakephp.org/downloads/nightly/1.2.x.x) or
checkout the 1.2.x.x svn branch.

To add the core tests to your existing application, uncompress the downloaded nightly package
into a temporary directory. Locate the 1.2.x.x_dd.mm.yyyy/cake/tests directory and
copy it (recursively) into your /cake/tests folder.

The tests can then be accessed by browsing to http://your.cake.domain/test.php � depending
on how your specific setup looks. Try executing one of the core test groups by clicking on the
corresponding link. Executing a test groupmight take a while, but you should eventually see
something like "2/2 test cases complete: 49 passes, 0 fails and 0 exceptions.".

Congratulations, you are now ready to start writing tests!

4.7.2 Testing overview , Unit testing vs. Web testing

The CakePHP test framework supports two types of testing. One is Unit Testing, where you test
small parts of your code, such as a method in a component or an action in a controller. The
other type of testing supported is Web Testing, where you automate the work of testing your
application through navigating pages, filling forms, clicking links and so on.

4.7.3 Preparing test data

4.7.3.1 About fixtures

When testing code that depends on models and data, one can use fixtures as a way to
generate temporary data tables loaded with sample data that can be used by the test. The
benefit of using fixtures is that your test has no chance of disrupting live application data. In
addition, you can begin testing your code prior to actually developing live content for an
application.

CakePHP attempts to use the connection named $test in your app/config/
database.php configuration file. If this connection is not usable, it will use the $default
database configuration and create the test tables in the database defined in that configuration.
In either case, it will add "test_suite_" to your own table prefix (if any) to prevent collision with
your existing tables.

1. <?php
2. class ArticleFixture extends CakeTestFixture {
3. var $name = 'Article';
4.
5. var $fields = array(
6. 'id' => array('type' => 'integer', 'key' => 'primary'),
7. 'title' => array('type' => 'string', 'length' => 255, 'null'
=> false),
8. 'body' => 'text',
9. 'published' => array('type' => 'integer', 'default' => '0',
'null' => false),
10. 'created' => 'datetime',
11. 'updated' => 'datetime'
12.);
13. var $records = array(
14. array ('id' => 1, 'title' => 'First Article', 'body' =>
'First Article Body', 'published' => '1', 'created' => '2007403418
10:39:23', 'updated' => '2007403418 10:41:31'),
15. array ('id' => 2, 'title' => 'Second Article', 'body' =>
'Second Article Body', 'published' => '1', 'created' => '2007403418
10:41:23', 'updated' => '2007403418 10:43:31'),
16. array ('id' => 3, 'title' => 'Third Article', 'body' =>
'Third Article Body', 'published' => '1', 'created' => '2007403418
10:43:23', 'updated' => '2007403418 10:45:31')
17.);
18. }
19. ?>

CakePHP performs the following during the course of a fixture based test case:

1. Creates tables for each of the fixtures needed
2. Populates tables with data, if data is provided in fixture
3. Runs test methods
4. Empties the fixture tables
5. Removes fixture tables from database

4.7.3.2 Creating fixtures

When creating a fixture you will mainly define two things: how the table is created (which
fields are part of the table), and which records will be initially populated to the test table. Let's
then create our first fixture, that will be used to test our own Article model. Create a file named
article_fixture.php in your app/tests/fixtures directory, with the following content:

We use $fields to specify which fields will be part of this table, on how they are defined. The
format used to define these fields is the same used in the function generateColumnSchema
() defined on Cake's database engine classes (for example, on file dbo_mysql.php.) Let's see
the available attributes a field can take and their meaning:

type
CakePHP internal data type. Currently supported: string (maps to VARCHAR), text
(maps to TEXT), integer (maps to INT), float (maps to FLOAT), datetime (maps to
DATETIME), timestamp (maps to TIMESTAMP), time (maps to TIME), date (maps to
DATE), and binary (maps to BLOB)

key
set to primary to make the field AUTO_INCREMENT, and a PRIMARY KEY for the
table.

length

1. <?php
2. class ArticleFixture extends CakeTestFixture {
3. var $name = 'Article';
4. var $import = 'Article';
5. }
6. ?>

1. <?php
2. class ArticleFixture extends CakeTestFixture {
3. var $name = 'Article';
4. var $import = array('model' => 'Article', 'records' => true);
5. }
6. ?>

1. <?php
2. class ArticleFixture extends CakeTestFixture {
3. var $name = 'Article';
4. var $import = array('table' => 'articles');
5. }
6. ?>

set to the specific length the field should take.
null

set to either true (to allow NULLs) or false (to disallow NULLs)
default

default value the field takes.

We lastly can set a set of records that will be populated after the test table is created. The format
is fairly straight forward and needs little further explanation. Just keep in mind that each
record in the $records array must have a key for every field specified in the $fields array. If a
field for a particular record needs to have a NULL value, just specify the value of that key as
NULL.

4.7.3.3 Importing table information and records

Your application may have already working models with real data associated to them, and you
might decide to test your model with that data. It would be then a duplicate effort to have to
define the table definition and/or records on your fixtures. Fortunately, there's a way for you to
define that table definition and/or records for a particular fixture come from an existing model
or an existing table.

Let's start with an example. Assuming you have a model named Article available in your
application (that maps to a table named articles), change the example fixture given in the
previous section (app/tests/fixtures/article_fixture.php) to:

This statement tells the test suite to import your table definition from the table linked to the
model called Article. You can use any model available in your application. The statement above
does not import records, you can do so by changing it to:

If on the other hand you have a table created but no model available for it, you can specify that
your import will take place by reading that table information instead. For example:

Will import table definition from a table called 'articles' using your CakePHP database
connection named 'default'. If you want to change the connection to use just do:

1. <?php
2. class ArticleFixture extends CakeTestFixture {
3. var $name = 'Article';
4. var $import = array('table' => 'articles', 'connection' => 'other');
5. }
6. ?>

1. <?php
2. class ArticleFixture extends CakeTestFixture {
3. var $name = 'Article';
4. var $import = array('table' => 'articles', 'records' => true);
5. }
6. ?>

1. <?php
2. class ArticleFixture extends CakeTestFixture {
3. var $name = 'Article';
4. var $import = 'Article';
5.
6. var $records = array(
7. array ('id' => 1, 'title' => 'First Article', 'body' =>
'First Article Body', 'published' => '1', 'created' => '2007403418
10:39:23', 'updated' => '2007403418 10:41:31'),
8. array ('id' => 2, 'title' => 'Second Article', 'body' =>
'Second Article Body', 'published' => '1', 'created' => '2007403418
10:41:23', 'updated' => '2007403418 10:43:31'),
9. array ('id' => 3, 'title' => 'Third Article', 'body' =>
'Third Article Body', 'published' => '1', 'created' => '2007403418
10:43:23', 'updated' => '2007403418 10:45:31')
10.);
11. }
12. ?>

Since it uses your CakePHP database connection, if there's any table prefix declared it will be
automatically used when fetching table information. The two snippets above do not import
records from the table. To force the fixture to also import its records, change it to:

You can naturally import your table definition from an existing model/table, but have your
records defined directly on the fixture as it was shown on previous section. For example:

4.7.4 Creating tests

First, lets go through a number of rules, or guidelines, concerning tests:

1. PHP files containing tests should be in your app/tests/cases/[some_folder].
2. The filenames of these files should end in .test.php instead of just .php.
3. The classes containing tests should extendCakeTestCase or CakeWebTestCase.
4. The name of any method containing a test (i.e. containing an assertion) should begin

with test, as in testPublished().

When you have created a test case, you can execute it by browsing to http://
your.cake.domain/cake_folder/test.php (depending on how your specific setup looks)
and clicking App test cases, and then click the link to your specific file.

4.7.4.1 CakeTestCase Callback Methods

1. <?php
2. class Article extends AppModel {
3. var $name = 'Article';
4.
5. function published($fields = null) {
6. $conditions = array(
7. $this4>name . '.published' => 1
8.);
9.
10. return $this4>findAll($conditions, $fields);
11. }
12.
13. }
14. ?>

If you want to sneak in some logic just before or after an individual CakeTestCase method, and/
or before or after your entire CakeTestCase, the following callbacks are available:

start()
First method called in a test case.

end()
Last method called in a test case.

startCase()
called before a test case is started.

endCase()
called after a test case has run.

before($method)
Announces the start of a test method.

after($method)
Announces the end of a test method.

startTest($method)
Called just before a test method is executed.

endTest($method)
Called just after a test method has completed.

4.7.5 Testing models

4.7.5.1 Creating a test case

Let's say we already have our Article model defined on app/models/article.php, which looks
like this:

We now want to set up a test that will use this model definition, but through fixtures, to test
some functionality in the model. CakePHP test suite loads a very minimum set of files (to keep
tests isolated), so we have to start by loading our parent model (in this case the Article model
which we already defined), and then inform the test suite that we want to test this model by
specifying which DB configuration it should use. CakePHP test suite enables a DB
configuration named test_suite that is used for all models that rely on fixtures. Setting $
useDbConfig to this configuration will let CakePHP know that this model uses the test suite

1. <?php
2. App::import('Model','Article');
3.
4. class ArticleTestCase extends CakeTestCase {
5. var $fixtures = array('app.article');
6. }
7. ?>

1. <?php
2. App::import('Model', 'Article');
3.
4. class ArticleTestCase extends CakeTestCase {
5. var $fixtures = array('app.article');
6.
7. function testPublished() {
8. $this4>Article =& ClassRegistry::init('Article');
9.
10. $result = $this4>Article4>published(array('id', 'title'));
11. $expected = array(
12. array('Article' => array('id' => 1, 'title' => 'First
Article')),
13. array('Article' => array('id' => 2, 'title' => 'Second
Article')),
14. array('Article' => array('id' => 3, 'title' => 'Third
Article'))
15.);
16.
17. $this4>assertEqual($result, $expected);
18. }
19. }
20. ?>

database connection.

Since we also want to reuse all our existing model code we will create a test model that will
extend from Article, set $useDbConfig and $name appropiately. Let's now create a file named
article.test.php in your app/tests/cases/models directory, with the following contents:

We have created the ArticleTestCase. In variable $fixtures we define the set of fixtures that
we'll use.

If your model is associated with other models, you will need to include ALL the fixtures for each
associated model even if you don't use them. For example: A hasMany B hasMany C hasMany
D. In ATestCase you will have to include fixtures for a, b, c and d.

4.7.5.2 Creating a test method

Let's now add a method to test the function published() in the Article model. Edit the file app/
tests/cases/models/article.test.php so it now looks like this:

You can see we have added a method called testPublished(). We start by creating an
instance of our fixture basedArticlemodel, and then run our published()method. In $
expected we set what we expect should be the proper result (that we know since we have
defined which records are initally populated to the article table.) We test that the result equals

1. <?php
2. class ArticlesController extends AppController {
3. var $name = 'Articles';
4. var $helpers = array('Ajax', 'Form', 'Html');
5.
6. function index($short = null) {
7. if (!empty($this4>data)) {
8. $this4>Article4>save($this4>data);
9. }
10. if (!empty($short)) {
11. $result = $this4>Article4>findAll(null, array('id',
12. 'title'));
13. } else {
14. $result = $this4>Article4>findAll();
15. }
16.
17. if (isset($this4>params['requested'])) {
18. return $result;
19. }
20.
21. $this4>set('title', 'Articles');
22. $this4>set('articles', $result);
23. }
24. }
25. ?>

our expectation by using the assertEqualmethod. See the section Creating Tests for
information on how to run the test.

4.7.6 Testing controllers

4.7.6.1 Creating a test case

Say you have a typical articles controller, with its corresponding model, and it looks like this:

Create a file named articles_controller.test.php in your app/tests/cases/controllers directory
and put the following inside:

1. <?php
2. class ArticlesControllerTest extends CakeTestCase {
3. function startCase() {
4. echo '<h1>Starting Test Case</h1>';
5. }
6. function endCase() {
7. echo '<h1>Ending Test Case</h1>';
8. }
9. function startTest($method) {
10. echo '<h3>Starting method ' . $method . '</h3>';
11. }
12. function endTest($method) {
13. echo '<hr />';
14. }
15. function testIndex() {
16. $result = $this4>testAction('/articles/index');
17. debug($result);
18. }
19. function testIndexShort() {
20. $result = $this4>testAction('/articles/index/short');
21. debug($result);
22. }
23. function testIndexShortGetRenderedHtml() {
24. $result = $this4>testAction('/articles/index/short',
25. array('return' => 'render'));
26. debug(htmlentities($result));
27. }
28. function testIndexShortGetViewVars() {
29. $result = $this4>testAction('/articles/index/short',
30. array('return' => 'vars'));
31. debug($result);
32. }
33. function testIndexFixturized() {
34. $result = $this4>testAction('/articles/index/short',
35. array('fixturize' => true));
36. debug($result);
37. }
38. function testIndexPostFixturized() {
39. $data = array('Article' => array('user_id' => 1, 'published'
40. => 1, 'slug'=>'new4article', 'title' => 'New Article', 'body'
=> 'New Body'));
41. $result = $this4>testAction('/articles/index',
42. array('fixturize' => true, 'data' => $data, 'method' => 'post'));
43. debug($result);
44. }
45. }
46. ?>

4.7.6.2 The testAction method

The new thing here is the testActionmethod. The first argument of that method is the Cake
url of the controller action to be tested, as in '/articles/index/short'.

The second argument is an array of parameters, consisting of:

return

Set to what you want returned.
Valid values are:

'vars' � You get the view vars available after executing action
'view' � You get The rendered view, without the layout
'contents' � You get the rendered view's complete html, including the layout
'result' � You get the returned value when action uses $this�>params['requested'].

The default is 'result'.
fixturize

Set to true if you want your models auto�fixturized (so your application tables get copied,
along with their records, to test tables so if you change data it does not affect your real
application.) If you set 'fixturize' to an array of models, then only those models will be
auto�fixturized while the other will remain with live tables. If you wish to use your
fixture files with testAction() do not use fixturize, and instead just use fixtures as you
normally would.

method
set to 'post' or 'get' if you want to pass data to the controller

data
the data to be passed. Set it to be an associative array consisting of fields => value. Take
a look at function testIndexPostFixturized() in above test case to see how
we emulate posting form data for a new article submission.

4.7.6.3 Pitfalls

If you use testAction to test a method in a controller that does a redirect, your test will terminate
immediately, not yielding any results.
See https://trac.cakephp.org/ticket/4154 (https://trac.cakephp.org/ticket/4154) for a
possible fix.

4.7.7 Testing Helpers

Since a decent amount of logic resides in Helper classes, it's important to make sure those
classes are covered by test cases.

Helper testing is a bit similar to the same approach for Components. Suppose we have a helper
called CurrencyRendererHelper located in app/views/helpers/currency_
renderer.php with its accompanying test case file located in app/tests/cases/
helpers/currency_renderer.test.php

4.7.7.1 Creating Helper test, part I

First of all we will define the responsibilities of our CurrencyRendererHelper. Basically, it will
have two methods just for demonstration purpose:

function usd($amount)

This function will receive the amount to render. It will take 2 decimal digits filling empty space
with zeros and prefix 'USD'.

function euro($amount)

1.

1. <?php
2. //Import the helper to be tested.
3. //If the tested helper were using some other helper, like Html,
4. //it should be impoorted in this line, and instantialized in startTest().
5. App::import('Helper', 'CurrencyRenderer');
6. class CurrencyRendererTest extends CakeTestCase {
7. private $currencyRenderer = null;
8. //Here we instantiate our helper, and all other helpers we need.
9. public function startTest() {
10. $this4>currencyRenderer = new CurrencyRendererHelper();
11. }
12. //testing usd() function.
13. public function testUsd() {
14. $this4>assertEqual('USD 5.30', $this4>currencyRenderer4>usd
(5.30));
15. //We should always have 2 decimal digits.
16. $this4>assertEqual('USD 1.00', $this4>currencyRenderer4>usd(1));
17. $this4>assertEqual('USD 2.05', $this4>currencyRenderer4>usd
(2.05));
18. //Testing the thousands separator
19. $this4>assertEqual('USD 12,000.70', $this4>currencyRenderer4>usd
(12000.70));
20. }

1. <?php
2. class CurrencyRendererHelper extends AppHelper {
3. public function usd($amount) {
4. return 'USD ' . number_format($amount, 2, '.', ',');
5. }
6. }

This function will do the same as usd() but prefix the output with 'EUR'. Just to make it a bit
more complex, we will also wrap the result in span tags:

Let's create the tests first:

Here, we call usd() with different parameters and tell the test suite to check if the returned
values are equal to what is expected.

Executing the test now will result in errors (because currencyRendererHelper doesn't even exist
yet) showing that we have 3 fails.

Once we know what our method should do, we can write the method itself:

Here we set the decimal places to 2, decimal separator to dot, thousands separator to comma,
and prefix the formatted number with 'USD' string.

Save this in app/views/helpers/currency_renderer.php and execute the test. You
should see a green bar andmessaging indicating 4 passes.

4.7.8 Testing components

Lets assume that we want to test a component called TransporterComponent, which uses a
model called Transporter to provide functionality for other controllers. We will use four files:

1. public function startup(&$controller){
2. $this4>Transporter = $controller4>Transporter;
3. }

1. class FakeTransporterController {}

1. $this4>TransporterComponentTest = new TransporterComponent();
2. $controller = new FakeTransporterController();
3. $controller4>Transporter = new TransporterTest();
4. $this4>TransporterComponentTest4>startup(&$controller);

A component called Transporters found in app/controllers/components/
transporter.php
A model called Transporter found in app/models/transporter.php
A fixture called TransporterTestFixture found in app/tests/fixtures/transporter_
fixture.php
The testing code found in app/tests/cases/transporter.test.php

4.7.8.1 Initializing the component

Since CakePHP discourages from importing models directly into components
(http://book.cakephp.org/view/62/components) we need a controller to access the data in
the model.

If the startup() function of the component looks like this:

then we can just design a really simple fake class:

and assign values into it like this:

4.7.8.2 Creating a test method

Just create a class that extends CakeTestCase and start writing tests!

1. class TransporterTestCase extends CakeTestCase {
2. var $fixtures = array('transporter');
3. function testGetTransporter() {
4. $this4>TransporterComponentTest = new TransporterComponent();
5. $controller = new FakeTransporterController();
6. $controller4>Transporter = new TransporterTest();
7. $this4>TransporterComponentTest4>startup(&$controller);
8.
9. $result = $this4>TransporterComponentTest4>getTransporter
("12345", "Sweden", "54321", "Sweden");
10. $this4>assertEqual($result, 1, "SP is best for 1xxxx45xxxx");
11.
12. $result = $this4>TransporterComponentTest4>getTransporter
("41234", "Sweden", "44321", "Sweden");
13. $this4>assertEqual($result, 2, "WSTS is best for 41xxx444xxx")
;
14.
15. $result = $this4>TransporterComponentTest4>getTransporter
("41001", "Sweden", "41870", "Sweden");
16. $this4>assertEqual($result, 3, "GL is best for 410xx4419xx");
17.
18. $result = $this4>TransporterComponentTest4>getTransporter
("12345", "Sweden", "54321", "Norway");
19. $this4>assertEqual($result, 0, "Noone can service Norway")
;
20. }
21. }
22.

4.7.9 Web testing , Testing views

Most, if not all, CakePHP projects result in a web application. While unit tests are an excellent
way to test small parts of functionality, youmight also want to test the functionality on a large
scale. The CakeWebTestCase class provides a good way of doing this testing from a user
point�of�view.

4.7.9.1 About CakeWebTestCase

CakeWebTestCase is a direct extension of the SimpleTestWebTestCase, without any extra
functionality. All the functionality found in the SimpleTest documentation for Web
testing (http://simpletest.sourceforge.net/en/web_tester_documentation.html) is also
available here. This also means that no functionality other than that of SimpleTest is available.
This means that you cannot use fixtures, and all web test cases involving updating/
saving to the databasewill permanently change your database values. Test results
are often based on what values the database holds, so making sure the database contains the
values you expect is part of the testing procedure.

4.7.9.2 Creating a test

In keeping with the other testing conventions, you should create your view tests in tests/cases/
views. You can, of course, put those tests anywhere but following the conventions whenever
possible is always a good idea. So let's create the file tests/cases/views/complete_web.test.php

1. class CompleteWebTestCase extends CakeWebTestCase

1. function CompleteWebTestCase(){
2. //Do stuff here
3. }

1. $this4>baseurl = current(split("webroot", $_SERVER['PHP_SELF']));

1. $this4>get($this4>baseurl."/products/index/");
2. $this4>post($this4>baseurl."/customers/login", $data);

1. $data = array(
2. "data[Customer][mail]" => "user@user.com",
3. "data[Customer][password]" => "userpass");

First, when you want to write web tests, youmust remember to extendCakeWebTestCase
instead of CakeTestCase:

If you need to do some preparation before you start the test, create a constructor:

When writing the actual test cases, the first thing you need to do is get some output to look at.
This can be done by doing a get or post request, using get() or post() respectively. Both
these methods take a full url as the first parameter. This can be dynamically fetched if we
assume that the test script is located under http://your.domain/cake/folder/webroot/test.php
by typing:

You can then do gets and posts using Cake urls, like this:

The second parameter to the post method, $data, is an associative array containing the post
data in Cake format:

When you have requested the page you can do all sorts of asserts on it, using standard
SimpleTest web test methods.

4.7.9.3 Walking through a page

CakeWebTest also gives you an option to navigate through your page by clicking links or
images, filling forms and clicking buttons. Please refer to the SimpleTest documentation for
more information on that.

4.7.10 Testing plugins

Tests for plugins are created in their own directory inside the plugins folder.

/app
 /plugins
 /pizza
 /tests
 /cases
 /fixtures
 /groups

They work just like normal tests but you have to remember to use the naming conventions for
plugins when importing classes. This is an example of a testcase for the PizzaOrder model
from the plugins chapter of this manual. A difference from other tests is in the first line where

1. <?php
2. App::import('Model', 'Pizza.PizzaOrder');
3. class PizzaOrderCase extends CakeTestCase {
4. // Plugin fixtures located in /app/plugins/pizza/tests/fixtures/
5. var $fixtures = array('plugin.pizza.pizza_order');
6. var $PizzaOrderTest;
7.
8. function testSomething() {
9. // ClassRegistry makes the model use the test database connection
10. $this4>PizzaOrderTest =& ClassRegistry::init('PizzaOrder');
11. // do some useful test here
12. $this4>assertTrue(is_object($this4>PizzaOrderTest));
13. }
14. }
15. ?>

1. echo "\n<!44 ";
2. parent::paintFail($message);
3. echo " 44>\n";

'Pizza.PizzaOrder' is imported. You also need to prefix your plugin fixtures with
'plugin.plugin_name.'.

If you want to use plugin fixtures in the app tests you can reference them using
'plugin.pluginName.fixtureName' syntax in the $fixtures array.

That is all there is to it.

4.7.11 Miscellaneous

4.7.11.1 Customizing the test reporter

The standard test reporter is veryminimalistic. If you want more shiny output to impress
someone, fear not, it is actually very easy to extend.
The only danger is that you have to fiddle with core Cake code, specifically /cake/tests/libs/
cake_reporter.php.

To change the test output you can override the following methods:

paintHeader()
Prints before the test is started.

paintPass()
Prints everytime a test case has passed. Use $this�>getTestList() to get an array of
information pertaining to the test, and $message to get the test result. Remember to call
parent::paintPass($message).

paintFail()
Prints everytime a test case has failed. Remember to call parent::paintFail($message).

paintFooter()
Prints when the test is over, i.e. when all test cases has been executed.

If, when running paintPass and paintFail, you want to hide the parent output, enclose the call
in html comment tags, as in:

A sample cake_reporter.php setup that creates a table to hold the test results follows:

1. <?php
2. /**
3. * CakePHP(tm) Tests <https://trac.cakephp.org/wiki/Developement/
TestSuite>
4. * Copyright 200542008, Cake Software Foundation, Inc.
5. * 1785 E. Sahara Avenue, Suite 4904204
6. * Las Vegas, Nevada 89104
7. *
8. * Licensed under The Open Group Test Suite License
9. * Redistributions of files must retain the above copyright notice.
10. */
11. class CakeHtmlReporter extends HtmlReporter {
12. function CakeHtmlReporter($characterSet = 'UTF48') {
13. parent::HtmlReporter($characterSet);
14. }
15.
16. function paintHeader($testName) {
17. $this4>sendNoCacheHeaders();
18. $baseUrl = BASE;
19. print "<h2>$testName</h2>\n";
20. print "<table style=\"\"><th>Res.</th><th>Test case</th><th>Message</
th>\n";
21. flush();
22. }
23. function paintFooter($testName) {
24. $colour = ($this4>getFailCount() + $this4>getExceptionCount() > 0 ?
"red" : "green");
25. print "</table>\n";
26. print "<div style=\"";
27. print "padding: 8px; margin4top: 1em; background4color: $colour;
color: white;";
28. print "\">";
29. print $this4>getTestCaseProgress() . "/" . $this4>getTestCaseCount();
30. print " test cases complete:\n";
31. print "" . $this4>getPassCount() . " passes, ";
32. print "" . $this4>getFailCount() . " fails and ";
33. print "" . $this4>getExceptionCount() . "
exceptions.";
34. print "</div>\n";
35. }
36. function paintPass($message) {
37. parent::paintPass($message);
38. echo "<tr>\n\t<td
width=\"20\" style=\"border: dotted 1px; border4top: hidden;
border4left: hidden; border4right: hidden\">\n";
39. print "\t\tPass: \n";
40. echo "\t</td>\n\t<td
width=\"40%\" style=\"border: dotted 1px; border4top: hidden;
border4left: hidden; border4right: hidden\">\n";
41. $breadcrumb = $this4>getTestList();
42. array_shift($breadcrumb);
43. array_shift($breadcrumb);
44. print implode("4>", $breadcrumb);
45. echo "\n\t</td>\n\t<td
width=\"40%\" style=\"border: dotted 1px; border4top: hidden;
border4left: hidden; border4right: hidden\">\n";
46. $message = split('at \[', $message);
47. print "4>$message[0]
\n\n";
48. echo "\n\t</td>\n</tr>\n\n";

49. }
50.
51. function paintFail($message) {
52. echo "\n<!44 ";
53. parent::paintFail($message);
54. echo " 44>\n";
55. echo "<tr>\n\t<td
width=\"20\" style=\"border: dotted 1px; border4top: hidden;
border4left: hidden; border4right: hidden\">\n";
56. print "\t\tFail: \n";
57. echo "\n\t</td>\n\t<td
width=\"40%\" style=\"border: dotted 1px; border4top: hidden;
border4left: hidden; border4right: hidden\">\n";
58. $breadcrumb = $this4>getTestList();
59. print implode("4>", $breadcrumb);
60. echo "\n\t</td>\n\t<td
width=\"40%\" style=\"border: dotted 1px; border4top: hidden;
border4left: hidden; border4right: hidden\">\n";
61. print "$message";
62. echo "\n\t</td>\n</tr>\n\n";
63. }
64.
65. function _getCss() {
66. return parent::_getCss() . ' .pass { color: green; }';
67. }
68.
69. }
70. ?>

1. <?php
2. class TryGroupTest extends GroupTest {
3. var $label = 'try';
4. function tryGroupTest() {
5. TestManager::addTestCasesFromDirectory($this, APP_TEST_CASES . DS .
'models');
6. }
7. }
8. ?>

4.7.11.2 Grouping tests

If you want several of your test to run at the same time, you can try creating a test group. Create
a file in /app/tests/groups/ and name it something like your_test_group_
name.group.php. In this file, extendGroupTest and import test as follows:

The code above will group all test cases found in the /app/tests/cases/models/ folder. To
add an individual file, use TestManager::addTestFile($this, filename).

4.8 Internationalization & Localization

One of the best ways for your applications to reach a larger audience is to cater for multiple
languages. This can often prove to be a daunting task, but the internationalization and
localization features in CakePHP make it much easier.

First, it’s important to understand some terminology. Internationalization refers to the ability
of an application to be localized. The term localization refers to the adaptation of an

1. <h2>Posts</h2>

1. <h2><?php __('Posts') ?></h2>

1. /app/locale/<locale>/LC_MESSAGES/<domain>.po

1. /app/locale/eng/LC_MESSAGES/default.po (English)
2. /app/locale/fre/LC_MESSAGES/default.po (French)
3. /app/locale/por/LC_MESSAGES/default.po (Portuguese)

application to meet specific language (or culture) requirements (i.e., a "locale").
Internationalization and localization are often abbreviated as i18n and l10n respectively; 18
and 10 are the number of characters between the first and last character.

4.8.1 Internationalizing Your Application

There are only a few steps to go from a single�language application to a multi�lingual
application, the first of which is to make use of the __() (http://api.cakephp.org/file/
basics.php#function+__) function in your code. Below is an example of some code for a
single�language application:

To internationalize your code, all you need to do is to wrap strings in the translate function
(http://api.cakephp.org/file/basics.php#function+__) like so:

If you do nothing further, these two code examples are functionally identical � they will both
send the same content to the browser. The __() function (http://api.cakephp.org/file/
basics.php#function+__) will translate the passed string if a translation is available, or
return it unmodified. It works similar to otherGettext (http://en.wikipedia.org/wiki/
Gettext) implementations (as do the other translate functions, such as __d() (http://
api.cakephp.org/file/basics.php#function+__d) , __n() (http://api.cakephp.org/file/
basics.php#function+__n) etc)

With your code ready to be multilingual, the next step is to create your pot file (http://
en.wikipedia.org/wiki/Gettext) , which is the template for all translatable strings in your
application. To generate your pot file(s), all you need to do is run the i18n console task
(http://book.cakephp.org/view/620/Core+Console+Applications) , which will look for
where you've used a translate function in your code and generate your pot file(s) for you. You
can and should re�run this console task any time you change the translations in your code.

The pot file(s) themselves are not used by CakePHP, they are the templates used to create or
update your po files (http://en.wikipedia.org/wiki/Gettext) , which contain the
translations. Cake will look for your po files in the following location:

The default domain is 'default', therefore your locale folder would look something like this:

To create or edit your po files it's recommended that you do not use your favorite editor. To
create a po file for the first time it is possible to copy the pot file to the correct location and
change the extension however unless you're familiar with their format, it's quite easy to create
an invalid po file or to save it as the wrong charset (if you're editing manually, use UTF�8 to
avoid problems). There are free tools such as PoEdit (http://www.poedit.net/) which make
editing and updating your po files an easy task; especially for updating an existing po file with
a newly updated pot file.

The three�character locale codes conform to the ISO 639+2 (http://www.loc.gov/standards/
iso639+2/php/code_list.php) standard, although if you create regional locales (en_US, en_
GB, etc.) cake will use them if appropriate.

there is a 1014�character limit for each msgstr value (source needed).

1. // App Controller Code.
2. function beforeFilter() {
3. $locale = Configure::read('Config.language');
4. if ($locale && file_exists(VIEWS . $locale . DS . $this4>viewPath)) {
5. // e.g. use /app/views/fre/pages/tos.ctp instead of /app/views/
pages/tos.ctp
6. $this4>viewPath = $locale . DS . $this4>viewPath;
7. }
8. }

1. // View code
2. echo $this4>element(Configure::read('Config.language') . '/tos')

1. Configure::write('Config.language', 'fre');

1. <?php
2. echo $form4>error(
3. 'Card.cardNumber',
4. __("errorCardNumber", true),
5. array('escape' => false)
6.);
7. ?>

Remember that po files are useful for short messages, if you find you want to translate long
paragraphs, or even whole pages � you should consider implementing a different solution. e.g.:

or

4.8.2 Localization in CakePHP

To change or set the language for your application, all you need to do is the following:

This tells Cake which locale to use (if you use a regional locale, such as fr_FR, it will use the
ISO 639+2 (http://www.loc.gov/standards/iso639+2/php/code_list.php) locale as a
fallback if it doesn't exist), you can change the language at any time, e.g. in your bootstrap if
you're setting the application default language, in your (app) controller beforeFilter if it's
specific to the request or user, or in fact anytime at all before you want a message in a different
language.

It's a good idea to serve up public content available in multiple languages from a unique url �
this makes it easy for users (and search engines) to find what they're looking for in the
language they are expecting. There are several ways to do this, it can be by using language
specific subdomains (en.example.com, fra.example.com, etc.), or using a prefix to the url such
as is done with this application. Youmay also wish to glean the information from the
browser’s user�agent, among other things.

As mentioned in the previous section, displaying localized content is done using the __()
convenience function, or one of the other translation functions all of which are globally
available, but probably be best utilized in your views. The first parameter of the function is used
as the msgid defined in the .po files.

Remember to use the return parameter for the various __*methods if you don't want the string
echo'ed directly. For example:

If you would like to have all of your validation error messages translated by default, a simple
solution would be to add the following code in you app_model.php:

1. function invalidate($field, $value = true) {
2. return parent::invalidate($field, __($value, true));
3. }

1. function invalidate($field, $value = true) {
2. return parent::invalidate($field, __d('validation_errors', $value,
true));
3. }

1. class RecipesController extends AppController {
2. var $paginate = array(
3. 'limit' => 25,
4. 'order' => array(
5. 'Post.title' => 'asc'
6.)
7.);
8. }

The i18n console task will not be able to determine the message id from the above example,
which means you'll need to add the entries to your pot file manually (or via your own script). To
prevent the need to edit your default.po(t) file every time you run the i18n console task, you can
use a different domain such as:

This will look for $value in the validation_errors.po file.

There's one other aspect of localizing your application which is not covered by the use of the
translate functions, and that is date/money formats. Don't forget that CakePHP is PHP :),
therefore to set the formats for these things you need to use setlocale (http://
www.php.net/setlocale) .

If you pass a locale that doesn't exist on your computer to setlocale (http://www.php.net/
setlocale) it will have no effect. You can find the list of available locales by running the
command $locale 4a in a terminal.

4.9 Pagination

One of the main obstacles of creating flexible and user�friendly web applications is designing
an intuitive UI. Many applications tend to grow in size and complexity quickly, and designers
and programmers alike find they are unable to cope with displaying hundreds or thousands of
records. Refactoring takes time, and performance and user satisfaction can suffer.

Displaying a reasonable number of records per page has always been a critical part of every
application and used to cause many headaches for developers. CakePHP eases the burden on
the developer by providing a quick, easy way to paginate data.

The PaginatorHelper offers a great solution because it's so easy to use. Apart from pagination,
it bundles some very easy�to�use sorting features. Last but not least, Ajax sorting and
pagination are supported as well.

4.9.1 Controller Setup

In the controller, we start by defining the pagination defaults in the $paginate controller
variable. It is important to note here that the order key must be defined in the array structure
given.

You can also include other find() options, such as fields:

1. class RecipesController extends AppController {
2. var $paginate = array(
3. 'fields' => array('Post.id', 'Post.created'),
4. 'limit' => 25,
5. 'order' => array(
6. 'Post.title' => 'asc'
7.)
8.);
9. }

1. class RecipesController extends AppController {
2. var $paginate = array(
3. 'Recipe' => array (...),
4. 'Author' => array (...)
5.);
6. }

1. class RecipesController extends AppController {
2. var $paginate = array(
3. 'limit' => 25,
4. 'contain' => array('Article')
5.);
6. }

1. function list_recipes() {
2. // similar to findAll(), but fetches paged results
3. $data = $this4>paginate('Recipe');
4. $this4>set('data', $data);
5. }

1. $data = $this4>paginate('Recipe', array('Recipe.title LIKE' => 'a%'));

Other keys that can be included in the $paginate array are similar to the parameters of the
Model�>find('all')method, that is: conditions, fields, order, limit, page, contain, and
recursive. In fact, you can define more than one set of pagination defaults in the controller, you
just name the pieces of the array after the model you wish to configure:

Example of syntax using Containable Behavior:

Once the $paginate variable has been defined, we can call the paginate()method in controller
actions. This method returns paged find() results from the model, and grabs some additional
paging statistics, which are passed to the View behind the scenes. This method also adds
PaginatorHelper to the list of helpers in your controller, if it has not been added already.

You can filter the records by passing conditions as second parameter to the paginate()
function.

Or you can also set the conditions key in the $paginate array.

4.9.2 Pagination in Views

It's up to you to decide how to show records to the user, but most often this will be done inside
HTML tables. The examples below assume a tabular layout, but the PaginatorHelper available
in views doesn't always need to be restricted as such.

See the details on PaginatorHelper (http://api.cakephp.org/class/paginator+helper) in
the API.

1. // app/views/recipes/list_recipes.ctp
2. <table>
3. <tr>
4. <th><?php echo $paginator4>sort('ID', 'id'); ?></th>
5. <th><?php echo $paginator4>sort('Title', 'title'); ?></th>
6. </tr>
7. <?php foreach($data as $recipe): ?>
8. <tr>
9. <td><?php echo $recipe['Recipe']['id']; ?> </td>
10. <td><?php echo $recipe['Recipe']['title']; ?> </td>
11. </tr>
12. <?php endforeach; ?>
13. </table>

1. <table>
2. <tr>
3. <th><?php echo $paginator4>sort('Title', 'title'); ?></th>
4. <th><?php echo $paginator4>sort('Author', 'Author.name'); ?></
th>
5. </tr>
6. <?php foreach($data as $recipe): ?>
7. <tr>
8. <td><?php echo $recipe['Recipe']['title']; ?> </td>
9. <td><?php echo $recipe['Author']['name']; ?> </td>
10. </tr>
11. <?php endforeach; ?>
12. </table>

1. <!44 Shows the page numbers 44>
2. <?php echo $paginator4>numbers(); ?>
3. <!44 Shows the next and previous links 44>
4. <?php
5. echo $paginator4>prev('« Previous ', null, null, array('class' =>
'disabled'));
6. echo $paginator4>next(' Next »', null, null, array('class' =>
'disabled'));
7. ?>
8. <!44 prints X of Y, where X is current page and Y is number of pages 44>
9. <?php echo $paginator4>counter(); ?>

1. <?php
2. echo $paginator4>counter(array(
3. 'format' => 'Page %page% of %pages%, showing %current% records out of
4. %count% total, starting on record %start%, ending on %end%'
5.));
6. ?>

As mentioned, the PaginatorHelper also offers sorting features which can be easily integrated
into your table column headers:

The links output from the sort() method of the PaginatorHelper allow users to click on table
headers to toggle the sorting of the data by a given field.

It is also possible to sort a column based on associations:

The final ingredient to pagination display in views is the addition of page navigation, also
supplied by the PaginationHelper.

The wording output by the counter() method can also be customized using special markers:

1. $paginator4>options(array('url' => $this4>passedArgs));

1. //for urls like http://www.example.com/en/controller/action
2. //that are routed as Router::connect('/:lang/:controller/:action/*',
array(),array('lang'=>'ta|en'));
3. $paginator4>options(array('url'=>array_merge(array('lang'=>$lang),$this4
>passedArgs)));

1. $paginator4>options(array('url' => array("0", "1")));

1. var $components = array('RequestHandler');

To pass all URL arguments to paginator functions, add the following to your view:

Route elements that are not named arguments should manually be merged with $this4
>passedArgs:

Or you can specify which params to pass manually:

4.9.3 AJAX Pagination

It's very easy to incorporate Ajax functionality into pagination. The only extra coding required
is the inclusion of the the Prototype JavaScript library, setting the indicator (loading icon
inside of DIV) and the specifying of a DIV to be updated (instead of reloading the page).

Do not forget to add the RequestHandler component to use Ajax calls to your controller:

4.9.3.1 Layout Changes

First, we'll include the Prototype library in the header, set up our status indicator image
(spinner.gif), and set up our main content wrapper DIV, "content".

Here’s what a layout including those elements might look like (partially):

1. <head>
2. <title><?php echo $title_for_layout; ?></title>
3. <?php echo $javascript4>link(array('prototype')); ?>
4. <style type="text/css">
5. div.disabled {
6. display: inline;
7. float: none;
8. clear: none;
9. color: #C0C0C0;
10. }
11. </style>
12. </head>
13. <body>
14. <div id="main">
15. <div id="spinner" style="display: none; float: right;">
16. <?php echo $html4>image('spinner.gif'); ?>
17. </div>
18. <div id="content">
19. <?php echo $content_for_layout; ?>
20. </div>
21. </div>
22. </body>
23. </html>

1. <?php
2. //Sets the update and indicator elements by DOM ID
3. $paginator4>options(array('update' => 'content', 'indicator' =>
'spinner'));
4.
5. echo $paginator4>prev('<< Previous', null, null, array('class' =>
'disabled'));
6.
7. echo $paginator4>next('Next >>', null, null, array('class' => 'disabled')
);
8. ?>
9.
10. <!44 prints X of Y, where X is current page and Y is number of pages 44>
11. <?php echo $paginator4>counter(); ?>

4.9.3.2 View Changes

The only extra configuration for Ajax pagination is done using the options() method of the
PaginationHelper, which specifies required Ajax parameters. In this case, we're specifying that
all pagination links should update the element with the ID 'content' with the resulting data,
and we want to show 'spinner' as the loading indicator.

If the ‘update’ key is not specifed, the PaginationHelper will output non�Ajax pagination
sorting and paging links.

4.9.4 Custom Query Pagination

Fix me: Please add an example where overriding paginate is justified

1. /**
2. * Overridden paginate method 4 group by week, away_team_id and home_
team_id
3. */
4. function paginate($conditions, $fields, $order, $limit, $page = 1, $
recursive = null, $extra = array()) {
5. $recursive = 41;
6. $group = $fields = array('week', 'away_team_id', 'home_team_id');
7. return $this4>find('all', compact('conditions', 'fields', 'order',
'limit', 'page', 'recursive', 'group'));
8. }

1. /**
2. * Overridden paginateCount method
3. */
4. function paginateCount($conditions = null, $recursive = 0, $extra = array
()) {
5. $sql = "SELECT DISTINCT ON(week, home_team_id, away_team_id) week,
home_team_id, away_team_id FROM games";
6. $this4>recursive = $recursive;
7. $results = $this4>query($sql);
8. return count($results);
9. }

Should you need to create custom queries to generate the data you want to paginate, you can
override the paginate() and paginateCount()model methods used by the pagination
controller logic.

Before continuing check you can't achieve your goal with the core model methods.

The paginate()method uses the same parameters as Model::find(). To use your own
method/logic override it in the model you wish to get the data from.

You also need to override the core paginateCount(), this method expects the same
arguments as Model::find('count'). The example below uses some Postgres�specifc
features, so please adjust accordingly depending on what database you are using.

The observant reader will have noticed that the paginate method we've defined wasn't actually
necessary � All you have to do is add the keyword in controller's $paginate class variable.

1. /**
2. * Add GROUP BY clause
3. */
4. var $paginate = array(
5. 'MyModel' => array('limit' => 20,
6. 'order' => array('week' => 'desc'),
7. 'group' => array('week', 'home_team_id',
'away_team_id'))
8.);
9. /**
10. * Or on4the4fly from within the action
11. */
12. function index() {
13. $this4>paginate = array(
14. 'MyModel' => array('limit' => 20,
15. 'order' => array('week' => 'desc'),
16. 'group' => array('week', 'home_team_id',
'away_team_id'))
17.);

1. //In app/config/routes.php...
2.
3. Router::mapResources('recipes');
4. Router::parseExtensions();

However, it will still be necessary to override the paginateCount()method to get an
accurate value.

4.10 REST

Many newer application programmers are realizing the need to open their core functionality to
a greater audience. Providing easy, unfettered access to your core API can help get your
platform accepted, and allows for mashups and easy integration with other systems.

While other solutions exist, REST is a great way to provide easy access to the logic you've
created in your application. It's simple, usually XML�based (we're talking simple XML,
nothing like a SOAP envelope), and depends on HTTP headers for direction. Exposing an API
via REST in CakePHP is simple.

4.10.1 The Simple Setup

The fastest way to get up and running with REST is to add a few lines to your routes.php file,
found in app/config. The Router object features a method called mapResources(), that is used
to set up a number of default routes for REST access to your controllers. If we wanted to allow
REST access to a recipe database, we'd do something like this:

The first line sets up a number of default routes for easy REST access. These routes are HTTP
Request Method sensitive.

1. // controllers/recipes_controller.php
2. class RecipesController extends AppController {
3. var $components = array('RequestHandler');
4. function index() {
5. $recipes = $this4>Recipe4>find('all');
6. $this4>set(compact('recipes'));
7. }
8. function view($id) {
9. $recipe = $this4>Recipe4>findById($id);
10. $this4>set(compact('recipe'));
11. }
12. function edit($id) {
13. $this4>Recipe4>id = $id;
14. if ($this4>Recipe4>save($this4>data)) {
15. $message = 'Saved';
16. } else {
17. $message = 'Error';
18. }
19. $this4>set(compact("message"));
20. }
21. function delete($id) {
22. if($this4>Recipe4>delete($id)) {
23. $message = 'Deleted';
24. } else {
25. $message = 'Error';
26. }
27. $this4>set(compact("message"));
28. }
29. }

HTTPMethod URL Controller action invoked

GET /recipes RecipesController::index()

GET /recipes/123 RecipesController::view(123)

POST /recipes RecipesController::add()

PUT /recipes/123 RecipesController::edit(123)

DELETE /recipes/123 RecipesController::delete(123)

POST /recipes/123 RecipesController::edit(123)

CakePHP's Router class uses a number of different indicators to detect the HTTP method being
used. Here they are in order of preference:

1. The _method POST variable
2. The X_HTTP_METHOD_OVERRIDE
3. The REQUEST_METHOD header

The _method POST variable is helpful in using a browser as a REST client (or anything else
that can do POST easily). Just set the value of _method to the name of the HTTP request
method you wish to emulate.

Once the router has been set up to map REST requests to certain controller actions, we can
move on to creating the logic in our controller actions. A basic controller might look something
like this:

Since we've added a call to Router::parseExtensions(), the CakePHP router is already primed to
serve up different views based on different kinds of requests. Since we're dealing with REST
requests, the view type is XML. We place the REST views for our RecipesController inside app/

1. // app/views/recipes/xml/index.ctp
2. <recipes>
3. <?php echo $xml4>serialize($recipes); ?>
4. </recipes>

1. <posts>
2. <post id="234" created="2008406413" modified="2008406414">
3. <author id="23423" first_name="Billy" last_name="Bob"></author>
4. <comment id="245" body="This is a comment for this post."></
comment>
5. </post>
6. <post id="3247" created="2008406415" modified="2008406415">
7. <author id="625" first_name="Nate" last_name="Johnson"></author>
8. <comment id="654" body="This is a comment for this post."></
comment>
9. </post>
10. </posts>

1. Router::connect(
2. "/:controller/:id",
3. array("action" => "edit", "[method]" => "PUT"),
4. array("id" => "[049+]")
5.)

views/xml. We can also use the XmlHelper for quick�and�easy XML output in those views.
Here's what our index view might look like:

Experienced CakePHP users might notice that we haven't included the XmlHelper in our
RecipesController $helpers array. This is on purpose � when serving up a specific content type
using parseExtensions(), CakePHP automatically looks for a view helper that matches the
type. Since we're using XML as the content type, the XmlHelper is automatically loaded up for
our use in those views.

The rendered XML will end up looking something like this:

Creating the logic for the edit action is a bit trickier, but not by much. Since you're providing an
API that outputs XML, it's a natural choice to receive XML as input. Not to worry, however: the
RequestHandler and Router classes make things much easier. If a POST or PUT request has an
XML content�type, then the input is taken and passed to an instance of Cake's Xml object,
which is assigned to the $data property of the controller. Because of this feature, handling
XML and POST data in parallel is seamless: no changes are required to the controller or model
code. Everything you need should end up in $this�>data.

4.10.2 Custom REST Routing

If the default routes created by mapResources() don't work for you, use the Router::connect()
method to define a custom set of REST routes. The connect() method allows you to define a
number of different options for a given URL. The first parameter is the URL itself, and the
second parameter allows you to supply those options. The third parameter allows you to specify
regex patterns to help CakePHP identify certain markers in the specified URL.

We'll provide a simple example here, and allow you to tailor this route for your other RESTful
purposes. Here's what our edit REST route would look like, without using mapResources():

Advanced routing techniques are covered elsewhere, so we'll focus on the most important point
for our purposes here: the [method] key of the options array in the second parameter. Once that
key has been set, the specified route works only for that HTTP request method (which could
also be GET, DELETE, etc.)

5 Core Components

CakePHP has a number of built�in components. They provide out of the box functionality for
several commonly used tasks.

Acl (http://book.cakephp.org/
view/171/Access+Control+Lists)

The Acl component provides an easy to use interface for
database and ini based access control lists.

Auth (http://book.cakephp.org/
view/172/Authentication)

The auth component provides an easy to use
authentication system using a variety of authentication
processes, such as controller callbacks, Acl, or Object
callbacks.

Cookie (http://
book.cakephp.org/view/177/

Cookies)

The cookie component behaves in a similar fashion to
the SessionComponent in that it provides a wrapper for
PHP's native cookie support.

Email (http://
book.cakephp.org/view/176/

Email)

An interface that can be used to send emails using one of
several mail transfer agents including php's mail() and
smtp.

RequestHandler (http://
book.cakephp.org/view/174/

Request+Handling)

The request handler allows you to introspect further into
the requests your visitors and inform your application
about the content types and requested information.

Security (http://
book.cakephp.org/view/175/

Security+Component)

The security component allows you to set tighter security
and use andmanage HTTP authentication.

Session (http://
book.cakephp.org/view/173/

Sessions)

The session component provides a storage independent
wrapper to PHP's sessions.

To learn more about each component see the menu on the left, or learn more about creating
your own components (http://book.cakephp.org/view/62/components) .

5.1 Access Control Lists

CakePHP's access control list functionality is one of the most oft�discussed, most likely
because it is the most sought after, but also because it can be the most confusing. If you're
looking for a good way to get started with ACLs in general, read on.

Be brave and stick with it, even if the going gets rough. Once you get the hang of it, it's an
extremely powerful tool to have on hand when developing your application.

5.1.1 Understanding How ACL Works

Powerful things require access control. Access control lists are a way to manage application
permissions in a fine�grained, yet easily maintainable andmanageable way.

Access control lists, or ACL, handle two main things: things that want stuff, and things that
are wanted. In ACL lingo, things (most often users) that want to use stuff are called access
request objects, or AROs. Things in the system that are wanted (most often actions or data) are
called access control objects, or ACOs. The entities are called 'objects' because sometimes the
requesting object isn't a person � sometimes youmight want to limit the access certain Cake
controllers have to initiate logic in other parts of your application. ACOs could be anything you

want to control, from a controller action, to a web service, to a line on your grandma's online
diary.

To review:

ACO � Access Control Object � Something that is wanted
ARO � Access Request Object � Something that wants something

Essentially, ACL is what is used to decide when an ARO can have access to an ACO.

In order to help you understand how everything works together, let's use a semi�practical
example. Imagine, for a moment, a computer system used by a familiar group of fantasy novel
adventurers from the Lord of the Rings. The leader of the group, Gandalf, wants to manage the
party's assets while maintaining a healthy amount of privacy and security for the other
members of the party. The first thing he needs to do is create a list of the AROs involved:

Gandalf
Aragorn
Bilbo
Frodo
Gollum
Legolas
Gimli
Pippin
Merry

Realize that ACL is not the same as authentication. ACL is what happens after a user has been
authenticated. Although the two are usually used in concert, it's important to realize the
difference between knowing who someone is (authentication) and knowing what they can do
(ACL).

The next thing Gandalf needs to do is make an initial list of things, or ACOs, the system will
handle. His list might look something like:

Weapons
The One Ring
Salted Pork
Diplomacy
Ale

Traditionally, systems were managed using a sort of matrix, that showed a basic set of users
and permissions relating to objects. If this information were stored in a table, it might look like
the following table:

Weapons TheRing Salted Pork Diplomacy Ale

Gandalf Allow Allow Allow

Aragorn Allow Allow Allow Allow

Bilbo Allow

Frodo Allow Allow

Gollum Allow

Legolas Allow Allow Allow Allow

Gimli Allow Allow

Pippin Allow Allow

Merry Allow

At first glance, it seems that this sort of system could work rather well. Assignments can be
made to protect security (only Frodo can access the ring) and protect against accidents
(keeping the hobbits out of the salted pork and weapons). It seems fine grained enough, and
easy enough to read, right?

For a small system like this, maybe a matrix setup would work. But for a growing system, or a
system with a large amount of resources (ACOs) and users (AROs), a table can become
unwieldy rather quickly. Imagine trying to control access to the hundreds of war encampments
and trying to manage them by unit. Another drawback to matrices is that you can't really
logically group sections of users or make cascading permissions changes to groups of users
based on those logical groupings. For example, it would sure be nice to automatically allow the
hobbits access to the ale and pork once the battle is over: Doing it on an individual user basis
would be tedious and error prone. Making a cascading permissions change to all 'hobbits'
would be easy.

ACL is most usually implemented in a tree structure. There is usually a tree of AROs and a tree
of ACOs. By organizing your objects in trees, permissions can still be dealt out in a granular
fashion, while still maintaining a good grip on the big picture. Being the wise leader he is,
Gandalf elects to use ACL in his new system, and organizes his objects along the following
lines:

Fellowship of the Ring™
Warriors

Aragorn
Legolas
Gimli

Wizards
Gandalf

Hobbits
Frodo
Bilbo
Merry
Pippin

Visitors
Gollum

Using a tree structure for AROs allows Gandalf to define permissions that apply to entire
groups of users at once. So, using our ARO tree, Gandalf can tack on a few group�based
permissions:

Fellowship of the Ring
(Deny: all)

Warriors
(Allow: Weapons, Ale, Elven Rations, Salted Pork)

Aragorn
Legolas
Gimli

Wizards
(Allow: Salted Pork, Diplomacy, Ale)

Gandalf
Hobbits
(Allow: Ale)

Frodo
Bilbo
Merry
Pippin

Visitors
(Allow: Salted Pork)

Gollum

If we wanted to use ACL to see if the Pippin was allowed to access the ale, we'd first get his
path in the tree, which is Fellowship�>Hobbits�>Pippin. Then we see the different permissions
that reside at each of those points, and use the most specific permission relating to Pippin and
the Ale.

ARO Node Permission Info Result

Fellowship of the Ring Deny all Denying access to ale.

Hobbits Allow 'ale' Allowing access to ale!

Pippin �� Still allowing ale!

Since the 'Pippin' node in the ACL tree doesn't specifically deny access to the ale ACO, the final
result is that we allow access to that ACO.

The tree also allows us to make finer adjustments for more granular control � while still
keeping the ability to make sweeping changes to groups of AROs:

Fellowship of the Ring
(Deny: all)

Warriors
(Allow: Weapons, Ale, Elven Rations, Salted Pork)

Aragorn
(Allow: Diplomacy)
Legolas
Gimli

Wizards
(Allow: Salted Pork, Diplomacy, Ale)

Gandalf
Hobbits
(Allow: Ale)

Frodo
(Allow: Ring)
Bilbo
Merry
(Deny: Ale)
Pippin
(Allow: Diplomacy)

Visitors
(Allow: Salted Pork)

Gollum

This approach allows us both the ability to make wide�reaching permissions changes, but also
fine�grained adjustments. This allows us to say that all hobbits can have access to ale, with
one exception—Merry. To see if Merry can access the Ale, we'd find his path in the tree:
Fellowship�>Hobbits�>Merry and work our way down, keeping track of ale�related
permissions:

ARO Node Permission Info Result

Fellowship of the Ring Deny all Denying access to ale.

Hobbits Allow 'ale' Allowing access to ale!

Merry Deny 'ale' Denying ale.

5.1.2 Defining Permissions: Cake's INI,based ACL

Cake's first ACL implementation was based on INI files stored in the Cake installation. While
it's useful and stable, we recommend that you use the database backed ACL solution, mostly
because of its ability to create new ACOs and AROs on the fly. We meant it for usage in simple

1. //Change these lines:
2. Configure::write('Acl.classname', 'DbAcl');
3. Configure::write('Acl.database', 'default');
4. //To look like this:
5. Configure::write('Acl.classname', 'IniAcl');
6. //Configure::write('Acl.database', 'default');

applications � and especially for those folks who might not be using a database for some
reason.

By default, CakePHP's ACL is database�driven. To enable INI�based ACL, you'll need to tell
CakePHP what system you're using by updating the following lines in app/config/core.php

ARO/ACO permissions are specified in /app/config/acl.ini.php. The basic idea is that
AROs are specified in an INI section that has three properties: groups, allow, and deny.

groups: names of ARO groups this ARO is a member of.
allow: names of ACOs this ARO has access to
deny: names of ACOs this ARO should be denied access to

ACOs are specified in INI sections that only include the allow and deny properties.

As an example, let's see how the Fellowship ARO structure we've been crafting would look like
in INI syntax:

;4444444444444444444444444444444444444
; AROs
;4444444444444444444444444444444444444
[aragorn]
groups = warriors
allow = diplomacy

[legolas]
groups = warriors

[gimli]
groups = warriors

[gandalf]
groups = wizards

[frodo]
groups = hobbits
allow = ring

[bilbo]
groups = hobbits

[merry]
groups = hobbits
deny = ale

[pippin]
groups = hobbits

[gollum]

groups = visitors

;4444444444444444444444444444444444444
; ARO Groups
;4444444444444444444444444444444444444
[warriors]
allow = weapons, ale, salted_pork

[wizards]
allow = salted_pork, diplomacy, ale

[hobbits]
allow = ale

[visitors]
allow = salted_pork

Now that you've got your permissions defined, you can skip along to the section on
checking permissions (http://book.cakephp.org/view/471/checking+permissions+the+
acl+c) using the ACL component.

5.1.3 Defining Permissions: Cake's Database ACL

Now that we've covered INI�based ACL permissions, let's move on to the (more commonly
used) database ACL.

5.1.3.1 Getting Started

The default ACL permissions implementation is database powered. Cake's database ACL
consists of a set of core models, and a console application that comes with your Cake
installation. The models are used by Cake to interact with your database in order to store and
retrieve nodes in tree format. The console application is used to initialize your database and
interact with your ACO and ARO trees.

To get started, first you'll need to make sure your /app/config/database.php is present
and correctly configured. See section 4.1 for more information on database configuration.

Once you've done that, use the CakePHP console to create your ACL database tables:

$ cake schema run create DbAcl

Running this command will drop and re�create the tables necessary to store ACO and ARO
information in tree format. The output of the console application should look something like
the following:

444
Cake Schema Shell
444

The following tables will be dropped.
acos
aros
aros_acos

Are you sure you want to drop the tables? (y/n)
[n] > y
Dropping tables.
acos updated.
aros updated.
aros_acos updated.

The following tables will be created.
acos
aros
aros_acos

Are you sure you want to create the tables? (y/n)
[y] > y
Creating tables.
acos updated.
aros updated.
aros_acos updated.
End create.

This replaces an older deprecated command, "initdb".

You can also use the SQL file found in app/config/sql/db_acl.sql, but that's nowhere
near as fun.

When finished, you should have three new database tables in your system: acos, aros, and
aros_acos (the join table to create permissions information between the two trees).

If you're curious about how Cake stores tree information in these tables, read up on modified
database tree traversal. The ACL component uses CakePHP's Tree Behavior (http://
book.cakephp.org/view/91/tree+behavior) to manage the trees' inheritances. The model
class files for ACL are all compiled in a single file db_acl.php (http://api.cakephp.org/1.2/
cake_2libs_2model_2db__acl_8php+source.html) .

Now that we're all set up, let's work on creating some ARO and ACO trees.

5.1.3.2 Creating Access Request Objects (AROs) and Access Control
Objects (ACOs)

In creating new ACL objects (ACOs and AROs), realize that there are two main ways to name
and access nodes. The first method is to link an ACL object directly to a record in your
database by specifying a model name and foreign key value. The secondmethod can be used
when an object has no direct relation to a record in your database � you can provide a textual
alias for the object.

In general, when you're creating a group or higher level object, use an alias. If you're
managing access to a specific item or record in the database, use the model/foreign key
method.

You create new ACL objects using the core CakePHP ACL models. In doing so, there are a
number of fields you'll want to use when saving data: model, foreign_key, alias, and
parent_id.

1. var $components = array('Acl');

The model and foreign_key fields for an ACL object allows you to link up the object to its
corresponding model record (if there is one). For example, many AROs will have
corresponding User records in the database. Setting an ARO's foreign_key to the User's ID
will allow you to link up ARO and User information with a single User model find() call if
you've set up the correct model associations. Conversely, if you want to manage edit operation
on a specific blog post or recipe listing, youmay choose to link an ACO to that specific model
record.

The alias for an ACL object is just a human�readable label you can use to identify an ACL
object that has no direct model record correlation. Aliases are usually useful in naming user
groups or ACO collections.

The parent_id for an ACL object allows you to fill out the tree structure. Supply the ID of the
parent node in the tree to create a new child.

Before we can create new ACL objects, we'll need to load up their respective classes. The easiest
way to do this is to include Cake's ACL Component in your controller's $components array:

Once we've got that done, let's see what some examples of creating these objects might look
like. The following code could be placed in a controller action somewhere:

While the examples here focus on ARO creation, the same techniques can be used to create an
ACO tree.

Keeping with our Fellowship setup, let's first create our ARO groups. Because our groups won't
really have specific records tied to them, we'll use aliases to create these ACL objects. What
we're doing here is from the perspective of a controller action, but could be done elsewhere.
What we'll cover here is a bit of an artificial approach, but you should feel comfortable using
these techniques to build AROs and ACOs on the fly.

This shouldn't be anything drastically new � we're just using models to save data like we
always do:

1. function anyAction()
2. {
3. $aro =& $this4>Acl4>Aro;
4.
5. //Here's all of our group info in an array we can iterate through
6. $groups = array(
7. 0 => array(
8. 'alias' => 'warriors'
9.),
10. 1 => array(
11. 'alias' => 'wizards'
12.),
13. 2 => array(
14. 'alias' => 'hobbits'
15.),
16. 3 => array(
17. 'alias' => 'visitors'
18.),
19.);
20.
21. //Iterate and create ARO groups
22. foreach($groups as $data)
23. {
24. //Remember to call create() when saving in loops...
25. $aro4>create();
26.
27. //Save data
28. $aro4>save($data);
29. }
30. //Other action logic goes here...
31. }

Once we've got them in there, we can use the ACL console application to verify the tree
structure.

$ cake acl view aro

Aro tree:
444
 [1]warriors

 [2]wizards

 [3]hobbits

 [4]visitors

444

I suppose it's not much of a tree at this point, but at least we've got some verification that we've
got four top�level nodes. Let's add some children to those ARO nodes by adding our specific
user AROs under these groups. Every good citizen of Middle Earth has an account in our new
system, so we'll tie these ARO records to specific model records in our database.

When adding child nodes to a tree, make sure to use the ACL node ID, rather than a foreign_
key value.

1. function anyAction()
2. {
3. $aro = new Aro();
4.
5. //Here are our user records, ready to be linked up to new ARO records
6. //This data could come from a model and modified, but we're using
static
7. //arrays here for demonstration purposes.
8.
9. $users = array(
10. 0 => array(
11. 'alias' => 'Aragorn',
12. 'parent_id' => 1,
13. 'model' => 'User',
14. 'foreign_key' => 2356,
15.),
16. 1 => array(
17. 'alias' => 'Legolas',
18. 'parent_id' => 1,
19. 'model' => 'User',
20. 'foreign_key' => 6342,
21.),
22. 2 => array(
23. 'alias' => 'Gimli',
24. 'parent_id' => 1,
25. 'model' => 'User',
26. 'foreign_key' => 1564,
27.),
28. 3 => array(
29. 'alias' => 'Gandalf',
30. 'parent_id' => 2,
31. 'model' => 'User',
32. 'foreign_key' => 7419,
33.),
34. 4 => array(
35. 'alias' => 'Frodo',
36. 'parent_id' => 3,
37. 'model' => 'User',
38. 'foreign_key' => 7451,
39.),
40. 5 => array(
41. 'alias' => 'Bilbo',
42. 'parent_id' => 3,
43. 'model' => 'User',
44. 'foreign_key' => 5126,
45.),
46. 6 => array(
47. 'alias' => 'Merry',
48. 'parent_id' => 3,
49. 'model' => 'User',
50. 'foreign_key' => 5144,
51.),
52. 7 => array(
53. 'alias' => 'Pippin',
54. 'parent_id' => 3,
55. 'model' => 'User',
56. 'foreign_key' => 1211,
57.),
58. 8 => array(

59. 'alias' => 'Gollum',
60. 'parent_id' => 4,
61. 'model' => 'User',
62. 'foreign_key' => 1337,
63.),
64.);
65.
66. //Iterate and create AROs (as children)
67. foreach($users as $data)
68. {
69. //Remember to call create() when saving in loops...
70. $aro4>create();
71. //Save data
72. $aro4>save($data);
73. }
74.
75. //Other action logic goes here...
76. }

Typically you won't supply both an alias and a model/foreign_key, but we're using both here to
make the structure of the tree easier to read for demonstration purposes.

The output of that console application command should now be a little more interesting. Let's
give it a try:

$ cake acl view aro

Aro tree:
444
 [1]warriors

 [5]Aragorn

 [6]Legolas

 [7]Gimli

 [2]wizards

 [8]Gandalf

 [3]hobbits

 [9]Frodo

 [10]Bilbo

 [11]Merry

 [12]Pippin

 [4]visitors

 [13]Gollum

444

1. class SomethingsController extends AppController
2. {
3. // You might want to place this in the AppController
4. // instead, but here works great too.
5. var $components = array('Acl');
6. }

1. function index()
2. {
3. //Allow warriors complete access to weapons
4. //Both these examples use the alias syntax
5. $this4>Acl4>allow('warriors', 'Weapons');
6.
7. //Though the King may not want to let everyone
8. //have unfettered access
9. $this4>Acl4>deny('warriors/Legolas', 'Weapons', 'delete');
10. $this4>Acl4>deny('warriors/Gimli', 'Weapons', 'delete');
11.
12. die(print_r('done', 1));
13. }

Based on that idea, let's set up an ACO tree that will mimic a Cake app setup. Since we have five
ACOs, we'll create an ACO tree that should end up looking something like the following:

Weapons
Rings
PorkChops
DiplomaticEfforts
Ales

One nice thing about a Cake ACL setup is that each ACO automatically contains four properties
related to CRUD (create, read, update, and delete) actions. You can create children nodes under
each of these five main ACOs, but using Cake's built in action management covers basic CRUD
operations on a given object. Keeping this in mind will make your ACO trees smaller and easier
to maintain. We'll see how these are used later on when we discuss how to assign permissions.

Since you're now a pro at adding AROs, use those same techniques to create this ACO tree.
Create these upper level groups using the core Aco model.

5.1.3.3 Assigning Permissions

After creating our ACOs and AROs, we can finally assign permissions between the two groups.
This is done using Cake's core Acl component. Let's continue on with our example.

Here we'll work in the context of a controller action. We do that because permissions are
managed by the Acl Component.

Let's set up some basic permissions using the AclComponent in an action inside this
controller.

The first call we make to the AclComponent allows any user under the 'warriors' ARO group
full access to anything under the 'Weapons' ACO group. Here we're just addressing ACOs and
AROs by their aliases.

Notice the usage of the third parameter? That's where we use those handy actions that are in�
built for all Cake ACOs. The default options for that parameter are create, read, update,

1. // 6342 = Legolas
2. // 1564 = Gimli
3. $this4>Acl4>deny(array('model' => 'User', 'foreign_key' => 6342),
'Weapons', 'delete');
4. $this4>Acl4>deny(array('model' => 'User', 'foreign_key' => 1564),
'Weapons', 'delete');

1. $this4>Acl4>check($aro, $aco, $action = '*');

and delete but you can add a column in the aros_acos database table (prefixed with _ � for
example _admin) and use it alongside the defaults.

The second set of calls is an attempt to make a more fine�grained permission decision. We
want Aragorn to keep his full�access privileges, but deny other warriors in the group the ability
to delete Weapons records. We're using the alias syntax to address the AROs above, but you
might want to use the model/foriegn key syntax yourself. What we have above is equivalent to
this:

Addressing a node using the alias syntax uses a slash�delimited string ('/users/employees/
developers'). Addressing a node using model/foreign key syntax uses an array with two
parameters: array('model' => 'User', 'foreign_key' => 8282).

The next section will help us validate our setup by using the AclComponent to check the
permissions we've just set up.

5.1.3.4 Checking Permissions: The ACL Component

Let's use the AclComponent to make sure dwarves and elves can't remove things from the
armory. At this point, we should be able to use the AclComponent to make a check between the
ACOs and AROs we've created. The basic syntax for making a permissions check is:

Let's give it a try inside a controller action:

1. function index()
2. {
3. //These all return true:
4. $this4>Acl4>check('warriors/Aragorn', 'Weapons');
5. $this4>Acl4>check('warriors/Aragorn', 'Weapons', 'create');
6. $this4>Acl4>check('warriors/Aragorn', 'Weapons', 'read');
7. $this4>Acl4>check('warriors/Aragorn', 'Weapons', 'update');
8. $this4>Acl4>check('warriors/Aragorn', 'Weapons', 'delete');
9.
10. //Remember, we can use the model/foreign key syntax
11. //for our user AROs
12. $this4>Acl4>check(array('model' => 'User', 'foreign_key' => 2356),
'Weapons');
13.
14. //These also return true:
15. $result = $this4>Acl4>check('warriors/Legolas', 'Weapons', 'create')
;
16. $result = $this4>Acl4>check('warriors/Gimli', 'Weapons', 'read');
17.
18. //But these return false:
19. $result = $this4>Acl4>check('warriors/Legolas', 'Weapons', 'delete')
;
20. $result = $this4>Acl4>check('warriors/Gimli', 'Weapons', 'delete');
21. }

1. class FooController extends AppController {
2. var $components = array('Auth');

1. class AppController extends Controller {
2. var $components = array('Auth');

The usage here is demonstrational, but hopefully you can see how checking like this can be
used to decide whether or not to allow something to happen, show an error message, or
redirect the user to a login.

5.2 Authentication

User authentication systems are a common part of many web applications. In CakePHP there
are several systems for authenticating users, each of which provides different options. At its
core the authentication component will check to see if a user has an account with a site. If they
do, the component will give access to that user to the complete site.

This component can be combined with the ACL (access control lists) component to create more
complex levels of access within a site. The ACL Component, for example, could allow you to
grant one user access to public site areas, while granting another user access to protected
administrative portions of the site.

CakePHP's AuthComponent can be used to create such a system easily and quickly. Let's take a
look at how you would build a very simple authentication system.

Like all components, you use it by adding 'Auth' to the list of components in your controller:

Or add it to your AppController so all of your controllers will use it:

Now, there are a few conventions to think about when using AuthComponent. By default, the
AuthComponent expects you to have a table called 'users' with fields called 'username' and
'password' to be used. In some situations, databases don't let you use 'password' as a column

1. CREATE TABLE users (
2. id integer auto_increment,
3. username char(50),
4. password char(50),
5. PRIMARY KEY (id)
6.);

1. class UsersController extends AppController {
2. var $name = 'Users';
3. var $components = array('Auth'); // Not necessary if declared in
your app controller
4.
5. /**
6. * The AuthComponent provides the needed functionality
7. * for login, so you can leave this function blank.
8. */
9. function login() {
10. }
11. function logout() {
12. $this4>redirect($this4>Auth4>logout());
13. }
14. }

1. <?php
2. $session4>flash('auth');
3. echo $form4>create('User', array('action' => 'login'));
4. echo $form4>input('username');
5. echo $form4>input('password');
6. echo $form4>end('Login');
7. ?>

name, later, you will see how to change the default field names to work with your own
environment.

Let's set up our users table using the following SQL:

Something to keep in mind when creating a table to store all your user authentication data is
that the AuthComponent expects the password value stored in the database to be hashed
instead of being stored in plaintext. Make sure that the field you will be using to store
passwords is long enough to store the hash (40 characters for SHA1, for example).

If you want to add a user manually to the db � the simplest method to get the right data is to
attempt to login and look at the sql log.

For the most basic setup, you'll only need to create two actions in your controller:

While you can leave the login() function blank, you do need to create the login view template
(saved in app/views/users/login.ctp). This is the only UsersController view template you need
to create, however. The example below assumes you are already using the Form helper:

This view creates a simple login form where you enter a username and password. Once you
submit this form, the AuthComponent takes care of the rest for you. The session flash message
will display any notices generated by the AuthComponent.

Believe it or not, we're done! That's how to implement an incredibly simple, database�driven
authentication system using the Auth component. However, there is a lot more we can do. Let's
take a look at some more advanced usage of the component.

1. class UsersController extends AppController {
2. var $components = array('Auth');
3. function beforeFilter() {
4. $this4>Auth4>fields = array(
5. 'username' => 'username',
6. 'password' => 'secretword'
7.);
8. }
9. }

1. function beforeFilter() {
2. $this4>Auth4>allow('index','view');
3. }

1. <?php
2. $session4>flash();
3. $session4>flash('auth');
4. ?>

5.2.1 Setting Auth Component Variables

Whenever you want to alter a default option for AuthComponent, you do that by creating a
beforeFilter() method for your controller, and then calling various built�in methods or setting
component variables.

For example, to change the field name used for passwords from 'password' to 'secretword', you
would do the following:

In this particular situation, you would also need to remember to change the field name in the
view template!

Another common use of Auth component variables is to allow access to certain methods
without the user being logged in (by default Auth restricts access to every action except the
login and logout methods).

For example if we want to allow all users access to the index and view methods (but not any
other), we would do the following:

5.2.2 Displaying Auth Error Messages

In order to display the error messages that Auth spits out you need to add the following code to
your view. In this case, the message will appear below the regular flash messages:

5.2.3 Troubleshooting Auth Problems

It can sometimes be quite difficult to diagnose problems when it's not behaving as expected, so
here are a few pointers to remember.

Password hashing

When posting information to an action via a form, the Auth component automatically hashes
the contents of your password input field if you also have data in the username field. So, if you
are trying to create some sort of registration page, make sure to have the user fill out a 'confirm
password' field so that you can compare the two. Here's some sample code:

1. <?php
2. function register() {
3. if ($this4>data) {
4. if ($this4>data['User']['password'] == $this4>Auth4>password($
this4>data['User']['password_confirm'])) {
5. $this4>User4>create();
6. $this4>User4>save($this4>data);
7. }
8. }
9. }
10. ?>

1. Security::setHash('md5'); // or sha1 or sha256.

1. function beforeFilter() {
2. $this4>Auth4>authenticate = ClassRegistry::init('User');
3. ...
4. parent::beforeFilter();
5. }

1. $acoNode = $this4>Auth4>action('user/delete');

5.2.4 Change Hash Function

The AuthComponent uses the Security class to hash a password. The Security class uses the
SHA1 scheme by default. To change another hash function used by the Auth component, use
the setHashmethod passing it md5, sha1 or sha256 as its first and only parameter.

The Security class uses a salt value (set in /app/config/core.php) to hash the password.

If you want to use different password hashing logic beyondmd5/sha1 with the application salt,
you will need to override the standard hashPasswordmechanism � Youmay need to do this if
for example you have an existing database that previously used a hashing scheme without a
salt. To do this, create the method hashPasswords (http://book.cakephp.org/
view/384/hashPasswords) in the class you want to be responsible for hashing your
passwords (usually the User model) and set authenticate (http://book.cakephp.org/
view/739/authenticate) to the object you're authenticating against (usually this is User)
like so:

With the above code, the User model hashPasswords() method will be called each time Cake
calls AuthComponent::hashPasswords().

5.2.5 AuthComponent Methods

5.2.5.1 action

action (string $action = ':controller/:action')

If you are using ACO's as part of your ACL structure, you can get the path to the ACO node
bound to a particular controller/action pair:

If you don't pass in any values, it uses the current controller / action pair

1. $this4>Auth4>allow('register');

1. $this4>Auth4>allow('foo', 'bar', 'baz');

1. $this4>Auth4>allow('*');

1. function beforeFilter() {
2. $this4>Auth4>authorize = 'controller';
3. $this4>Auth4>allow('delete');
4. }
5. function isAuthorized() {
6. if ($this4>Auth4>user('role') != 'admin') {
7. $this4>Auth4>deny('delete');
8. }
9. ...
10. }

5.2.5.2 allow

If you have some actions in your controller that you don't have to authenticate against (such as
a user registration action), you can addmethods that the AuthComponent should ignore. The
following example shows how to allow an action named 'register'.

If you wish to allow multiple actions to skip authentication, you supply them as parameters to
the allow() method:

Shortcut: youmay also allow all the actions in a controller by using '*'.

If you are using requestAction in your layout or elements you should allow those actions in
order to be able to open login page properly.

The auth component assumes that your actions names follow conventions (http://
book.cakephp.org/view/559/URL+Considerations+for+Controller+Names) and are
underscored.

5.2.5.3 deny

There may be times where you will want to remove actions from the list of allowed actions (set
using $this�>Auth�>allow()). Here's an example:

5.2.5.4 hashPasswords

hashPasswords ($data)

This method checks if the $data contains the username and password fields as specified by
the variable $fields indexed by the model name as specified by $userModel. If the $data
array contains both the usename and password, it hashes the password field in the array and
returns the data array in the same format. This function should be used prior to insert or
update calls of the user when the password field is affected.

1. $data['User']['username'] = 'me@me.com';
2. $data['User']['password'] = 'changeme';
3. $hashedPasswords = $this4>Auth4>hashPasswords($data);
4. print_r($hashedPasswords);
5. /* returns:
6. Array
7. (
8. [User] => Array
9. (
10. [username] => me@me.com
11. [password] => 8ed3b7e8ced419a679a7df93eff22fae
12.)
13.)
14. */

1. $this4>Auth4>mapActions(
2. array(
3. 'create' => array('someAction'),
4. 'read' => array('someAction', 'someAction2'),
5. 'update' => array('someAction'),
6. 'delete' => array('someAction')
7.)
8.);

The $hashedPasswords['User']['password'] field would now be hashed using the password
function of the component.

If your controller uses the Auth component and posted data contains the fields as explained
above, it will automatically hash the password field using this function.

5.2.5.5 mapActions

If you are using Acl in CRUD mode, youmay want to assign certain non�default actions to each
part of CRUD.

5.2.5.6 login

login($data = null)

If you are doing some sort of Ajax�based login, you can use this method to manually log
someone into the system. If you don't pass any value for $data, it will automatically use POST
data passed into the controller.

5.2.5.7 logout

Provides a quick way to de�authenticate someone, and redirect them to where they need to go.
This method is also useful if you want to provide a 'Log me out' link inside a members' area of
your application.

Example:

1. $this4>redirect($this4>Auth4>logout());

1. if ($this4>data['User']['password'] ==
2. $this4>Auth4>password($this4>data['User']['password2'])) {
3. // Passwords match, continue processing
4. ...
5. } else {
6. $this4>flash('Typed passwords did not match', 'users/register');
7. }

1. if ($this4>Auth4>user('role') == 'admin') {
2. $this4>flash('You have admin access');
3. }

1. $data['User'] = $this4>Auth4>user();

1. $session4>read('Auth.User'); // returns complete user record
2. $session4>read('Auth.User.first_name') //returns particular field value

5.2.5.8 password

password (string $password)

Pass in a string, and you can get what the hashed password would look like. This is an
essential functionality if you are creating a user registration screen where you have users enter
their password a second time to confirm it.

The auth component will automatically hash the password field if the username field is also
present in the submitted data

Cake appends your password string to a salt value and then hashes it. The hashing function
used depends on the one set by the core utility class Security (sha1 by default). You can use
the Security::setHash function to change the hashing method. The salt value is used
from your application's configuration defined in your core.php

5.2.5.9 user

user(string $key = null)

This method provides information about the currently authenticated user. The information is
taken from the session. For example:

It can also be used to return the whole user session data like so:

If this method returns null, the user is not logged in.

In the view you can use the Session helper to retrieve the currently authenticated user's
information:

The session key can be different depending on which model Auth is configured to use. Eg. If
you use model Account instead of User, then the session key would be Auth.Account

5.2.6 AuthComponent Variables

1. <?php
2. $this4>Auth4>userModel = 'Member';
3. ?>

1. <?php
2. $this4>Auth4>fields = array('username' => 'email', 'password' =>
'passwd');
3. ?>

1. <?php
2. $this4>Auth4>userScope = array('User.active' => true);
3. ?>

1. <?php
2. $this4>Auth4>loginAction = array('admin' => false, 'controller' =>
'members', 'action' => 'login');
3. ?>

Now, there are several Auth�related variables that you can use as well. Usually you add these
settings in your Controller's beforeFilter() method. Or, if you need to apply such settings site�
wide, you would add them to App Controller's beforeFilter()

5.2.6.1 userModel

Don't want to use a User model to authenticate against? No problem, just change it by setting
this value to the name of the model you want to use.

5.2.6.2 fields

Overrides the default username and password fields used for authentication.

5.2.6.3 userScope

Use this to provide additional requirements for authentication to succeed.

5.2.6.4 loginAction

You can change the default login from /users/login to be any action of your choice.

5.2.6.5 loginRedirect

The AuthComponent remembers what controller/action pair you were trying to get to before
you were asked to authenticate yourself by storing this value in the Session, under the
Auth.redirect key. However, if this session value is not set (if you're coming to the login
page from an external link, for example), then the user will be redirected to the URL specified
in loginRedirect.

Example:

1. <?php
2. $this4>Auth4>loginRedirect = array('controller' => 'members',
'action' => 'home');
3. ?>

1. <?php
2. $this4>Auth4>logoutRedirect = array(Configure::read('Routing.admin')
=> false, 'controller' => 'members', 'action' => 'logout');
3. ?>

1. <?php
2. $this4>Auth4>loginError = "No, you fool! That's not the right
password!";
3. ?>

1. <?php
2. $this4>Auth4>authError = "Sorry, you are lacking access.";
3. ?>

5.2.6.6 logoutRedirect

You can also specify where you want the user to go after they are logged out, with the default
being the login action.

5.2.6.7 loginError

Change the default error message displayed when someone does not successfully log in.

5.2.6.8 authError

Change the default error message displayed when someone attempts to access an object or
action to which they do not have access.

5.2.6.9 autoRedirect

Normally, the AuthComponent will automatically redirect you as soon as it authenticates.
Sometimes you want to do some more checking before you redirect users:

1. <?php
2. function beforeFilter() {
3. ...
4. $this4>Auth4>autoRedirect = false;
5. }
6. ...
7. function login() {
8. //44 code inside this function will execute only when autoRedirect
was set to false (i.e. in a beforeFilter).
9. if ($this4>Auth4>user()) {
10. if (!empty($this4>data)) {
11. $cookie = array();
12. $cookie['username'] = $this4>data['User']['username'];
13. $cookie['password'] = $this4>data['User']['password'];
14. $this4>Cookie4>write('Auth.User', $cookie, true, '+2
weeks');
15. unset($this4>data['User']['remember_me']);
16. }
17. $this4>redirect($this4>Auth4>redirect());
18. }
19. if (empty($this4>data)) {
20. $cookie = $this4>Cookie4>read('Auth.User');
21. if (!is_null($cookie)) {
22. if ($this4>Auth4>login($cookie)) {
23. // Clear auth message, just in case we use it.
24. $this4>Session4>del('Message.auth');
25. $this4>redirect($this4>Auth4>redirect());
26. }
27. }
28. }
29. }
30. ?>

1. <?php
2. $this4>Auth4>authorize = 'controller';
3. ?>

The code in the login function will not execute unless you set $autoRedirect to false in a
beforeFilter. The code present in the login function will only execute after authentication was
attempted. This is the best place to determine whether or not a successful login occurred by the
AuthComponent (should you desire to log the last successful login timestamp, etc.).

5.2.6.10 authorize

Normally, the AuthComponent will attempt to verify that the login credentials you've entered
are accurate by comparing them to what's been stored in your user model. However, there are
times where youmight want to do some additional work in determining proper credentials. By
setting this variable to one of several different values, you can do different things. Here are
some of the more common ones youmight want to use.

When authorize is set to 'controller', you'll need to add a method called isAuthorized() to your
controller. This method allows you to do some more authentication checks and then return
either true or false.

1. <?php
2. function isAuthorized() {
3. if ($this4>action == 'delete') {
4. if ($this4>Auth4>user('role') == 'admin') {
5. return true;
6. } else {
7. return false;
8. }
9. }
10. return true;
11. }
12. ?>

1. <?php
2. $this4>Auth4>authorize = 'model';
3. ?>

1. <?php
2. class User extends AppModel {
3. ...
4. function isAuthorized($user, $controller, $action) {
5. switch ($action) {
6. case 'default':
7. return false;
8. break;
9. case 'delete':
10. if ($user['User']['role'] == 'admin') {
11. return true;
12. }
13. break;
14. }
15. }
16. }
17. ?>

1. <?php
2. $this4>Auth4>authorize = 'actions';
3. ?>

1. <?php
2. $this4>Auth4>authorize = 'crud';
3. ?>

Remember that this method will be checked after you have already passed the basic
authentication check against the user model.

Don't want to add anything to your controller andmight be using ACO's? You can get the
AuthComponent to call a method in your user model called isAuthorized() to do the same sort
of thing:

Lastly, you can use authorize with actions such as below

By using actions, Auth will make use of ACL and check with AclComponent::check(). An
isAuthorized function is not needed.

By using crud, Auth will make use of ACL and check with AclComponent::check(). Actions
should be mapped to CRUD (seemapActions (http://book.cakephp.org/view/813/
mapActions)).

1. <?php
2. $this4>Auth4>sessionKey = 'Authorized';
3. ?>

5.2.6.11 sessionKey

Name of the session array key where the record of the current authed user is stored.

Defaults to "Auth", so if unspecified, the record is stored in "Auth.{$userModel name}".

5.2.6.12 ajaxLogin

If you are doing Ajax or Javascript based requests that require authenticated sessions, set this
variable to the name of a view element you would like to be rendered and returned when you
have an invalid or expired session.

As with any part of CakePHP, be sure to take a look atAuthComponent class (http://
api.cakephp.org/class/auth+component) for a more in�depth look at the AuthComponent.

5.2.6.13 authenticate

This variable holds a reference to the object responsible for hashing passwords if it is
necessary to change/override the default password hashing mechanism. See Changing the
Encryption Type (http://book.cakephp.org/view/566/Changing+Encryption+Type) for
more info.

5.2.6.14 actionPath

If using action�based access control, this defines how the paths to action ACO nodes is
computed. If, for example, all controller nodes are nested under an ACO node named
'Controllers', $actionPath should be set to 'Controllers/'.

5.3 Cookies

The CookieComponent is a wrapper around the native PHP setcookie method. It also includes a
host of delicious icing to make coding cookies in your controllers very convenient. Before
attempting to use the CookieComponent, youmust make sure that 'Cookie' is listed in your
controllers' $components array.

5.3.1 Controller Setup

There are a number of controller variables that allow you to configure the way cookies are
created andmanaged. Defining these special variables in the beforeFilter() method of your
controller allows you to define how the CookieComponent works.

Cookie
variable

default description

string $
name

'CakeCookie' The name of the cookie.

1. var $components = array('Cookie');
2. function beforeFilter() {
3. $this4>Cookie4>name = 'baker_id';
4. $this4>Cookie4>time = 3600; // or '1 hour'
5. $this4>Cookie4>path = '/bakers/preferences/';
6. $this4>Cookie4>domain = 'example.com';
7. $this4>Cookie4>secure = true; //i.e. only sent if using secure HTTPS
8. $this4>Cookie4>key = 'qSI232qs*&sXOw!';
9. }

1. $this4>Cookie4>write('name','Larry');

1. $this4>Cookie4>write('User.name', 'Larry');
2. $this4>Cookie4>write('User.role','Lead');

string $
key

null This string is used to encrypt the value written to the cookie. This
string should be random and difficult to guess.

string $
domain

'' The domain name allowed to access the cookie. e.g. Use
'.yourdomain.com' to allow access from all your subdomains.

int or
string $
time

'5 Days'

The time when your cookie will expire. Integers are interpreted as
seconds and a value of 0 is equivalent to a 'session cookie': i.e. the
cookie expires when the browser is closed. If a string is set, this will
be interpreted with PHP function strtotime(). You can set this
directly within the write() method.

string $
path '/'

The server path on which the cookie will be applied. If $cookiePath
is set to '/foo/', the cookie will only be available within the /foo/
directory and all sub�directories such as /foo/bar/ of your domain.
The default value is the entire domain. You can set this directly
within the write() method.

boolean $
secure

false

Indicates that the cookie should only be transmitted over a secure
HTTPS connection. When set to true, the cookie will only be set if a
secure connection exists. You can set this directly within the write()
method.

The following snippet of controller code shows how to include the CookieComponent and set
up the controller variables needed to write a cookie named 'baker_id' for the domain
'example.com' which needs a secure connection, is available on the path ‘/bakers/
preferences/’, and expires in one hour.

Next, let’s look at how to use the different methods of the Cookie Component.

5.3.2 Using the Component

This section outlines the methods of the CookieComponent.

write(mixed $key,mixed $value, boolean $encrypt, mixed $expires)

The write() method is the heart of cookie component, $key is the cookie variable name you
want, and the $value is the information to be stored.

You can also group your variables by supplying dot notation in the key parameter.

If you want to write more than one value to the cookie at a time, you can pass an array:

1. $this4>Cookie4>write(
2. array('name'=>'Larry','role'=>'Lead')
3.);

1. $this4>Cookie4>write('name','Larry',false);

1. //Both cookies expire in one hour.
2. $this4>Cookie4>write('first_name','Larry',false, 3600);
3. $this4>Cookie4>write('last_name','Masters',false, '1 hour');

1. // Outputs “Larry”
2. echo $this4>Cookie4>read('name');
3.
4. //You can also use the dot notation for read
5. echo $this4>Cookie4>read('User.name');
6.
7. //To get the variables which you had grouped
8. //using the dot notation as an array use something like
9. $this4>Cookie4>read('User');
10.
11. // this outputs something like array('name' => 'Larry',
'role'=>'Lead')

1. //Delete a variable
2. $this4>Cookie4>del('bar')
3.
4. //Delete the cookie variable bar, but not all under foo
5. $this4>Cookie4>del('foo.bar')
6.

All values in the cookie are encrypted by default. If you want to store the values as plain�text,
set the third parameter of the write() method to false.

The last parameter to write is $expires – the number of seconds before your cookie will expire.
For convenience, this parameter can also be passed as a string that the php strtotime()
function understands:

read(mixed $key)

This method is used to read the value of a cookie variable with the name specified by $key.

del(mixed $key)

Deletes a cookie variable of the name in $key. Works with dot notation.

destroy()

Destroys the current cookie.

5.4 Email

The emailComponent is a way for you to add simple email sending functionality to your
CakePHP application. Using the same concepts of layouts and view ctp files to send formated
messages as text, html or both. It supports sending via the built in mail functions of PHP, via
smtp server or a debug mode where it writes the message out to a session flash message. It
supports file attachments and does some basic header injection checking/ filtering for you.
There is a lot that it doesn't do for you but it will get you started.

1. $this4>Email4>reset()

1. $this4>Email4>from = 'Somebody <somebody@example.com>';
2. $this4>Email4>to = 'Somebody Else <somebody.else@example.com>';
3. $this4>Email4>subject = 'Test';
4. $this4>Email4>send('Hello message body!');

5.4.1 Class Attributes and Variables

These are the values that you can set before you call EmailComponent::send()

to address the message is going to (string)

cc array of addresses to cc the message to

bcc array of addresses to bcc (blind carbon copy) the message to

replyTo reply to address (string)

from from address (string)

subject subject for the message (string)

template
The email element to use for the message (located in app/views/
elements/email/html/ and app/views/elements/email/text/)

layout
The layout used for the email (located in app/views/layouts/email/
html/ and app/views/layouts/email/text/)

lineLength Length at which lines should be wrapped. Defaults to 70. (integer)

sendAs how do you want message sent string values of text, html or both

attachments array of files to send (absolute and relative paths)

delivery
how to send the message (mail, smtp [would require smtpOptions set
below] and debug)

smtpOptions
associative array of options for smtpmailer (port, host, timeout,
username, password, client)

There are some other things that can be set but you should refer to the api documentation for
more information

5.4.1.1 Sending Multiple Emails in a loop

If you wish to sendmultiple emails using a loop, you'll need to reset the email fields using the
reset method of the Email component. You'll need to reset before setting the email properties
again.

5.4.2 Sending a basic message

To send a message without using a template, simply pass the body of the message as a string
(or an array of lines) to the send() method. For example:

5.4.2.1 Setting up the Layouts

To use both text and html mailing message you need to create layout files for them, just like in
setting up your default layouts for the display of your views in a browser, you need to set up

1. email/
2. html/
3. default.ctp
4. text/
5. default.ctp

1. <?php echo $content_for_layout; ?>

1. <!DOCTYPE HTML PUBLIC "4//W3C//DTD HTML 4.0 Transitional//EN">
2. <html>
3. <body>
4. <?php echo $content_for_layout; ?>
5. </body>
6. </html>

1. Dear <?php echo $User['first']. ' ' . $User['last'] ?>,
2. Thank you for your interest.

1. <p>Dear <?php echo $User['first']. ' ' . $User['last'] ?>,

2. Thank you for your interest.</p>

1. <?php
2. var $components = array('Email');
3. ?>

default layouts for your email messages. In the app/views/layouts/ directory you need to
set up (at a minimum) the following structure

These are the files that hold the layout templates for your default messages. Some example
content is below

email/text/default.ctp

email/html/default.ctp

5.4.2.2 Setup an email element for the message body

In the app/views/elements/email/ directory you need to set up folders for text and
html unless you plan to just send one or the other. In each of these folders you need to create
templates for both types of messages referring to the content that you send to the view either by
using $this�>set() or using the $contents parameter of the send() method. Some simple
examples are shown below. For this example we will call the templates simple_message.ctp

text

html

5.4.2.3 Controller

In your controller you need to add the component to your $components array or add a $
components array to your controller like:

In this example we will set up a private method to handle sending the email messages to a user
identified by an $id. In our controller (let's use the User controller in this example)

1. <?php
2. function _sendNewUserMail($id) {
3. $User = $this4>User4>read(null,$id);
4. $this4>Email4>to = $User['User']['email'];
5. $this4>Email4>bcc = array('secret@example.com');
6. $this4>Email4>subject = 'Welcome to our really cool thing';
7. $this4>Email4>replyTo = 'support@example.com';
8. $this4>Email4>from = 'Cool Web App <app@example.com>';
9. $this4>Email4>template = 'simple_message'; // note no '.ctp'
10. //Send as 'html', 'text' or 'both' (default is 'text')
11. $this4>Email4>sendAs = 'both'; // because we like to send pretty
mail
12. //Set view variables as normal
13. $this4>set('User', $User);
14. //Do not pass any args to send()
15. $this4>Email4>send();
16. }
17. ?>

1.
2. $this4>_sendNewUserMail($this4>User4>id);

1. /* SMTP Options */
2. $this4>Email4>smtpOptions = array(
3. 'port'=>'25',
4. 'timeout'=>'30',
5. 'host' => 'your.smtp.server',
6. 'username'=>'your_smtp_username',
7. 'password'=>'your_smtp_password',
8. 'client' => 'smtp_helo_hostname'
9.);
10. /* Set delivery method */
11. $this4>Email4>delivery = 'smtp';
12. /* Do not pass any args to send() */
13. $this4>Email4>send();
14. /* Check for SMTP errors. */
15. $this4>set('smtp4errors', $this4>Email4>smtpError);

You have sent a message, you could call this from another method like

5.4.3 Sending A Message Using SMTP

To send an email using an SMTP server, the steps are similar to sending a basic message. Set
the delivery method to smtp and assign any options to the Email object's smtpOptions
property. Youmay also retrieve SMTP errors generated during the session by reading the
smtpError property of the component.

If your SMTP server requires authentication, be sure to specify the username and password
parameters for smtpOptions as shown in the example.

If you don't know what an SMTP HELO is, then youmost likely will not need to set the
client parameter for the smtpOptions. This is only needed for compatibility with SMTP
servers which do not fully respect RFC 821 (SMTP HELO).

5.5 Request Handling

1. <?php
2. class WidgetController extends AppController {
3.
4. var $components = array('RequestHandler');
5.
6. //rest of controller
7. }
8. ?>

1. class PostsController extends AppController {
2.
3. var $components = array('RequestHandler');
4. function beforeFilter () {
5. if ($this4>RequestHandler4>accepts('html')) {
6. // Execute code only if client accepts an HTML (text/html)
response
7. } elseif ($this4>RequestHandler4>accepts('xml')) {
8. // Execute XML4only code
9. }
10. if ($this4>RequestHandler4>accepts(array('xml', 'rss', 'atom'))
) {
11. // Executes if the client accepts any of the above: XML,
RSS or Atom
12. }
13. }
14. }

The Request Handler component is used in CakePHP to obtain additional information about
the HTTP requests that are made to your applications. You can use it to inform your controllers
about Ajax as well as gain additional insight into content types that the client accepts and
automatically changes to the appropriate layout when file extensions are enabled.

By default RequestHandler will automatically detect Ajax requests based on the HTTP�X�
Requested�With header that many javascript libraries use. When used in conjunction with
Router::parseExtensions() RequestHandler will automatically switch the layout and view files
to those that match the requested type. Furthermore, if a helper with the same name as the
requested extension exists, it will be added to the Controllers Helper array. Lastly, if XML data
is POST'ed to your Controllers, it will be parsed into an XML object which is assigned to
Controller::data, and can then be saved as model data. In order to make use of Request Handler
it must be included in your $components array.

5.5.1 Obtaining Request Information

Request Handler has several methods that provide information about the client and its request.

accepts ($type = null)

$type can be a string, or an array, or null. If a string, accepts will return true if the client
accepts the content type. If an array is specified, accepts return true if any one of the content
types is accepted by the client. If null returns an array of the content�types that the client
accepts. For example:

Other request 'type' detection methods include:

isAjax()

Returns true if the request contains the X�Requested�Header equal to XMLHttpRequest.

1. if ($this4>RequestHandler4>isAjax()) {
2. Configure::write('debug', 0);
3. $this4>header('Pragma: no4cache');
4. $this4>header('Cache4control: no4cache');
5. $this4>header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
6. }
7. //Continue Controller action

isSSL()

Returns true if the current request was made over an SSL connection.

isXml()

Returns true if the current request accepts XML as a response.

isRss()

Returns true if the current request accepts RSS as a response.

isAtom()

Returns true if the current call accepts an Atom response, false otherwise.

isMobile()

Returns true if user agent string matches a mobile web browser, or if the client accepts WAP
content. The supportedMobile User Agent strings are:

iPhone
MIDP
AvantGo
BlackBerry
J2ME
Opera Mini
DoCoMo
NetFront
Nokia
PalmOS
PalmSource
portalmmm
Plucker
ReqwirelessWeb
SonyEricsson
Symbian
UP.Browser
Windows CE
Xiino

isWap()

Returns true if the client accepts WAP content.

All of the above request detection methods can be used in a similar fashion to filter
functionality intended for specific content types. For example when responding to Ajax
requests, you often will want to disable browser caching, and change the debug level. However,
you want to allow caching for non�ajax requests. The following would accomplish that:

You could also disable caching with the functionally analogous
Controller::disableCache

1. if ($this4>RequestHandler4>isAjax()) {
2. $this4>disableCache();
3. }
4. //Continue Controller action

5.5.2 Request Type Detection

RequestHandler also provides information about what type of HTTP request has been made
and allowing you to respond to each Request Type.

isPost()

Returns true if the request is a POST request.

isPut()

Returns true if the request is a PUT request.

isGet()

Returns true if the request is a GET request.

isDelete()

Returns true if the request is a DELETE request.

5.5.3 Obtaining Additional Client Information

getClientIP()

Get the remote client IP address

getReferrer()

Returns the domain name from which the request originated

getAjaxVersion()

Gets Prototype version if call is Ajax, otherwise empty string. The Prototype library sets a
special "Prototype version" HTTP header.

5.5.4 Responding To Requests

In addition to request detection RequestHandler also provides easy access to altering the output
and content type mappings for your application.

setContent($name, $type = null)

$name string � The name of the Content�type ie. html, css, json, xml.
$type mixed � The mime�type(s) that the Content�type maps to.

setContent adds/sets the Content�types for the given name. Allows content�types to be mapped
to friendly aliases and or extensions. This allows RequestHandler to automatically respond to
requests of each type in its startup method. Furthermore, these content types are used by prefers
() and accepts().

setContent is best used in the beforeFilter() of your controllers, as this will best leverage the
automagicness of content�type aliases.

The default mappings are:

javascript text/javascript
js text/javascript
json application/json
css text/css
html text/html, */*
text text/plain
txt text/plain
csv application/vnd.ms�excel, text/plain
form application/x�www�form�urlencoded
filemultipart/form�data
xhtml application/xhtml+xml, application/xhtml, text/xhtml
xhtml+mobile application/vnd.wap.xhtml+xml
xml application/xml, text/xml
rss application/rss+xml
atom application/atom+xml
amf application/x�amf
wap text/vnd.wap.wml, text/vnd.wap.wmlscript, image/vnd.wap.wbmp
wml text/vnd.wap.wml
wmlscript text/vnd.wap.wmlscript
wbmp image/vnd.wap.wbmp
pdf application/pdf
zip application/x�zip
tar application/x�tar

prefers($type = null)

Determines which content�types the client prefers. If no parameter is given the most likely
content type is returned. If $type is an array the first type the client accepts will be returned.
Preference os determined primarily by the file extension parsed by Router if one has been
provided. and secondly by the list of content�types in HTTP_ACCEPT.

renderAs($controller, $type)

$controller � Controller Reference
$type � friendly content type name to render content for ex. xml, rss.

Change the render mode of a controller to the specified type. Will also append the appropriate
helper to the controller's helper array if available and not already in the array.

respondAs($type, $options)

$type � Friendly content type name ex. xml, rss or a full content type like application/x�
shockwave
$options � If $type is a friendly type name that has more than one content association, $
index is used to select the content type.

Sets the response header based on content�type map names. If DEBUG is greater than 2, the
header is not set.

responseType()

Returns the current response type Content�type header or null if one has yet to be set.

mapType($ctype)

Maps a content�type back to an alias

5.6 Security Component

The Security Component creates an easy way to integrate tighter security in your application.
An interface for managing HTTP�authenticated requests can be created with Security
Component. It is configured in the beforeFilter() of your controllers. It has several configurable
parameters. All of these properties can be set directly or through setter methods of the same
name.

If an action is restricted using the Security Component it is black�holed as an invalid request
which will result in a 404 error by default. You can configure this behavior by setting the $this�
>Security�>blackHoleCallback property to a callback function in the controller. Keep in mind
that black holes from all of the Security Component's methods will be ran through this callback
method.

When using the Security Component youmust use the FormHelper to create your forms. The
Security Component looks for certain indicators that are created andmanaged by the
FormHelper (especially those created in create() and end()).

5.6.1 Configuration

$blackHoleCallback
A Controller callback that will handle and requests that are blackholed.

$requirePost
A List of controller actions that require a POST request to occur. An array of controller
actions or '*' to force all actions to require a POST.

$requireSecure
List of actions that require an SSL connection to occur. An array of controller actions or
'*' to force all actions to require a SSL connection.

$requireAuth
List of actions that requires a valid authentication key. This validation key is set by
Security Component.

$requireLogin
List of actions that require HTTP�Authenticated logins (basic or digest). Also accepts '*'
indicating that all actions of this controller require HTTP�authentication.

$loginOptions
Options for HTTP�Authenticate login requests. Allows you to set the type of
authentication and the controller callback for the authentication process.

$loginUsers
An associative array of usernames => passwords that are used for HTTP�authenticated
logins. If you are using digest authentication, your passwords should be MD5�hashed.

$allowedControllers
A List of Controller from which the actions of the current controller are allowed to
receive requests from. This can be used to control cross controller requests.

$allowedActions
Actions from which actions of the current controller are allowed to receive requests.
This can be used to control cross controller requests.

$disabledFields
List of form fields that shall be ignored when validating POST � The value, presence or
absence of these form fields will not be taken into account when evaluating whether a
form submission is valid. Specify fields as you do for the FormHelper
(Model.fieldname).

5.6.2 Methods

5.6.2.1 requirePost()

Sets the actions that require a POST request. Takes any number of arguments. Can be called
with no arguments to force all actions to require a POST.

5.6.2.2 requireSecure()

Sets the actions that require a SSL�secured request. Takes any number of arguments. Can be
called with no arguments to force all actions to require a SSL�secured.

5.6.2.3 requireAuth()

Sets the actions that require a valid Security Component generated token. Takes any number of
arguments. Can be called with no arguments to force all actions to require a valid
authentication.

5.6.2.4 requireLogin()

Sets the actions that require a valid HTTP�Authenticated request. Takes any number of
arguments. Can be called with no arguments to force all actions to require valid HTTP�
authentication.

5.6.2.5 loginCredentials(string $type)

Attempt to validate login credentials for a HTTP�authenticated request. $type is the type of
HTTP�Authentication you want to check. Either 'basic', or 'digest'. If left null/empty both will
be tried. Returns an array with login name and password if successful.

5.6.2.6 loginRequest(array $options)

Generates the text for an HTTP�Authenticate request header from an array of $options.

$options generally contains a 'type', 'realm' . Type indicate which HTTP�Authenticate method
to use. Realm defaults to the current HTTP server environment.

5.6.2.7 parseDigestAuthData(string $digest)

Parse an HTTP digest authentication request. Returns and array of digest data as an
associative array if succesful, and null on failure.

1. <?php
2. class WidgetController extends AppController {
3. var $components = array('Security');
4. function beforeFilter() {
5. $this4>Security4>requirePost('delete');
6. }
7. }
8. ?>

1. <?php
2. class WidgetController extends AppController {
3. var $components = array('Security');
4. function beforeFilter() {
5. if(isset($this4>params[Configure::read('Routing.admin')])){
6. $this4>Security4>requireSecure();
7. }
8. }
9. }
10. ?>

5.6.2.8 generateDigestResponseHash(array $data)

Creates a hash that to be compared with an HTTP digest�authenticated response. $data should
be an array created by SecurityComponent::parseDigestAuthData().

5.6.2.9 blackHole(object $controller, string $error)

Black�hole an invalid request with a 404 error or a custom callback. With no callback, the
request will be exited. If a controller callback is set to SecurityComponent::blackHoleCallback,
it will be called and passed any error information.

5.6.3 Usage

Using the security component is generally done in the controller beforeFilter(). You would
specify the security restrictions you want and the Security Component will enforce them on its
startup.

In this example the delete action can only be successfully triggered if it recieves a POST request.

This example would force all actions that had admin routing to require secure SSL requests.

1. <?php
2. class WidgetController extends AppController {
3. var $components = array('Security');
4. function beforeFilter() {
5. if(isset($this4>params[Configure::read('Routing.admin')])){
6. $this4>Security4>blackHoleCallback = 'forceSSL';
7. $this4>Security4>requireSecure();
8. }
9. }
10. function forceSSL() {
11. $this4>redirect('https://' . $_SERVER['SERVER_NAME'] . $this4
>here);
12. }
13. }
14. ?>

1. class ApiController extends AppController {
2. var $name = 'Api';
3. var $uses = array();
4. var $components = array('Security');
5. function beforeFilter() {
6. $this4>Security4>loginOptions = array(
7. 'type'=>'basic',
8. 'realm'=>'MyRealm'
9.);
10. $this4>Security4>loginUsers = array(
11. 'john'=>'johnspassword',
12. 'jane'=>'janespassword'
13.);
14. $this4>Security4>requireLogin();
15. }
16.
17. function index() {
18. //protected application logic goes here...
19. }
20. }

This example would force all actions that had admin routing to require secure SSL requests.
When the request is black holed, it will call the nominated forceSSL() callback which will
redirect non�secure requests to secure requests automatically.

5.6.4 Basic HTTP Authentication

The SecurityComponent has some very powerful authentication features. Sometimes youmay
need to protect some functionality inside your application usingHTTP Basic
Authentication (http://en.wikipedia.org/wiki/Basic_access_authentication) . One
common usage for HTTP Auth is protecting a REST or SOAP API.

This type of authentication is called basic for a reason. Unless you're transferring information
over SSL, credentials will be transferred in plain text.

Using the SecurityComponent for HTTP authentication is easy. The code example below
includes the SecurityComponent and adds a few lines of code inside the controller's beforeFilter
method.

The loginOptions property of the SecurityComponent is an associative array specifying how
logins should be handled. You only need to specify the type as basic to get going. Specify the

1. array('User' =>
2. array('username' => 'clarkKent@dailyplanet.com')
3.);

realm if you want display a nice message to anyone trying to login or if you have several
authenticated sections (= realms) of your application you want to keep separate.

The loginUsers property of the SecurityComponent is an associative array containing users and
passwords that should have access to this realm. The examples here use hard�coded user
information, but you'll probably want to use a model to make your authentication credentials
more manageable.

Finally, requireLogin() tells SecurityComponent that this Controller requires login. As with
requirePost(), above, providing method names will protect those methods while keeping others
open.

5.7 Sessions

The CakePHP session component provides a way to persist client data between page requests.
It acts as a wrapper for the $_SESSION as well as providing convenience methods for several $
_SESSION related functions.

Sessions can be persisted in a few different ways. The default is to use the settings provided by
PHP; however, other options exist.

cake
Saves the session files in your app's tmp/sessions directory.

database
Uses CakePHP's database sessions.

cache
Use the caching engine configured by Cache::config(). Very useful in conjunction with
Memcache (in setups with multiple application servers) to store both cached data and
sessions.

php
The default setting. Saves session files as indicated by php.ini

To change the default Session handling method alter the Session.save Configuration to reflect
the option you desire. If you choose 'database' you should also uncomment the
Session.database settings and run the database session SQL file located in app/config

5.7.1 Methods

The Session component is used to interact with session information. It includes basic CRUD
functions as well as features for creating feedback messages to users.

It should be noted that Array structures can be created in the Session by using dot notation. So
User.username would reference the following:

Dots are used to indicate nested arrays. This notation is used for all Session component
methods wherever a $name is used.

5.7.1.1 write

write($name, $value)

1. $this4>Session4>write('Person.eyeColor', 'Green');

1. <div id="flashMessage" class="message"> [message] </div>

1. $this4>Session4>setFlash('Example message text', 'default', array
('class' => 'example_class'))

1. <div id="flashMessage" class="example_class">Example message text</div>

1. $green = $this4>Session4>read('Person.eyeColor');

Write to the Session puts $value into $name. $name can be a dot separated array. For example:

This writes the value 'Green' to the session under Person => eyeColor.

5.7.1.2 setFlash

setFlash($message, $layout = 'default', $params = array(), $key =
'flash')

Used to set a session variable that can be used for output in the View. $layout allows you to
control which layout (located in /app/views/layouts) should be used to render the
message in. If you leave the $layout set to 'default', the message will be wrapped with the
following:

$params allows you to pass additional view variables to the rendered layout. $key sets the $
messages index in the Message array. Default is 'flash'.

Parameters can be passed affecting the rendered div, for example padding "class" in the $
params array will apply a class to the div output using $session4>flash() in your layout
or view.

The output from using $session4>flash() with the above example would be:

5.7.1.3 read

read($name)

Returns the value at $name in the Session. If $name is null the entire session will be returned.
E.g.

Retrieve the value Green from the session.

5.7.1.4 check

check($name)

Used to check if a Session variable has been set. Returns true on existence and false on non�
existence.

1. $this4>Session4>del('Person.eyeColor');

1. $this4>Session4>del('Person');

1. $this4>Session4>destroy()

5.7.1.5 delete

delete($name) /*or*/ del($name)

Clear the session data at $name. E.g.

Our session data no longer has the value 'Green', or the index eyeColor set. However, Person is
still in the Session. To delete the entire Person information from the session use.

5.7.1.6 destroy

The destroymethod will delete the session cookie and all session data stored in the
temporary file system. It will then destroy the PHP session and then create a fresh session.

5.7.1.7 error

error()

Used to determine the last error in a session.

1. class User extends AppModel {
2. var $actsAs = array('Acl' => array('type' => 'requester'));
3. }

1. class Post extends AppModel {
2. var $actsAs = array('Acl' => array('type' => 'controlled'));
3. }

1. $this4>Post4>Behaviors4>attach('Acl', array('type' => 'controlled'));

1. function parentNode() {
2. return null;
3. }

1. function parentNode() {
2. return 'root_node';
3. }

6 Core Behaviors

Behaviors add extra functionality to your models. CakePHP comes with a number of built�in
behaviors such as Tree and Containable.

6.1 ACL

The Acl behavior provides a way to seamlessly integrate a model with your ACL system. It can
create both AROs or ACOs transparently.

To use the new behavior, you can add it to the $actsAs property of your model. When adding it
to the actsAs array you choose to make the related Acl entry an ARO or an ACO. The default is
to create AROs.

This would attach the Acl behavior in ARO mode. To join the ACL behavior in ACO mode use:

You can also attach the behavior on the fly like so:

6.1.1 Using the AclBehavior

Most of the AclBehavior works transparently on your Model's afterSave(). However, using it
requires that your Model has a parentNode() method defined. This is used by the AclBehavior
to determine parent�>child relationships. A model's parentNode() methodmust return null or
return a parentModel reference.

If you want to set an ACO or ARO node as the parent for your Model, parentNode() must return
the alias of the ACO or ARO node.

A more complete example. Using an example User Model, where User belongsTo Group.

1. function parentNode() {
2. if (!$this4>id && empty($this4>data)) {
3. return null;
4. }
5. $data = $this4>data;
6. if (empty($this4>data)) {
7. $data = $this4>read();
8. }
9. if (!$data['User']['group_id']) {
10. return null;
11. } else {
12. $this4>Group4>id = $data['User']['group_id'];
13. $groupNode = $this4>Group4>node();
14. return array('Group' => array('id' => $groupNode[0]['Aro']
['foreign_key']));
15. }
16. }

1. $this4>User4>id = 1;
2. $node = $this4>User4>node();
3.
4. $user = array('User' => array(
5. 'id' => 1
6.));
7. $node = $this4>User4>node($user);

1. class Post extends AppModel {
2. var $actsAs = array('Containable');
3. }

1. $this4>Post4>Behaviors4>attach('Containable');

In the above example the return is an array that looks similar to the results of a model find. It is
important to have the id value set or the parentNode relation will fail. The AclBehavior uses
this data to construct its tree structure.

6.1.2 node()

The AclBehavior also allows you to retrieve the Acl node associated with a model record. After
setting $model�>id. You can use $model�>node() to retrieve the associated Acl node.

You can also retrieve the Acl Node for any row, by passing in a data array.

Will both return the same Acl Node information.

6.2 Containable

A new addition to the CakePHP core is the ContainableBehavior. This model behavior allows
you to filter and limit model find operations. Using Containable will help you cut down on
needless wear and tear on your database, increasing the speed and overall performance of your
application. The class will also help you search and filter your data for your users in a clean
and consistent way.

To use the new behavior, you can add it to the $actsAs property of your model:

You can also attach the behavior on the fly:

1. debug($this4>Post4>find('all'));

To see how Containable works, let's look at a few examples. First, we'll start off with a find()
call on a model named Post. Let's say that Post hasMany Comment, and Post
hasAndBelongsToMany Tag. The amount of data fetched in a normal find() call is rather
extensive:

[0] => Array
 (
 [Post] => Array
 (
 [id] => 1
 [title] => First article
 [content] => aaa
 [created] => 2008405418 00:00:00
)
 [Comment] => Array
 (
 [0] => Array
 (
 [id] => 1
 [post_id] => 1
 [author] => Daniel
 [email] => dan@example.com
 [website] => http://example.com
 [comment] => First comment
 [created] => 2008405418 00:00:00
)
 [1] => Array
 (
 [id] => 2
 [post_id] => 1
 [author] => Sam
 [email] => sam@example.net
 [website] => http://example.net
 [comment] => Second comment
 [created] => 2008405418 00:00:00
)
)
 [Tag] => Array
 (
 [0] => Array
 (
 [id] => 1
 [name] => A
)
 [1] => Array
 (
 [id] => 2
 [name] => B
)
)
)

1. $this4>Post4>contain();
2. $this4>Post4>find('all');

1. $this4>Post4>find('all', array('contain' => false));

1. $this4>Post4>recursive = 41;
2. $this4>Post4>find('all');

1. $this4>Post4>contain('Tag');
2. $this4>Post4>find('all');

[1] => Array
 (
 [Post] => Array
 (...

For some interfaces in your application, youmay not need that much information from the Post
model. One thing the ContainableBehavior does is help you cut down on what find() returns.

For example, to get only the post�related information, you can do the following:

You can also invoke Containable's magic from inside the find() call:

Having done that, you end up with something a lot more concise:

[0] => Array
 (
 [Post] => Array
 (
 [id] => 1
 [title] => First article
 [content] => aaa
 [created] => 2008405418 00:00:00
)
)
[1] => Array
 (
 [Post] => Array
 (
 [id] => 2
 [title] => Second article
 [content] => bbb
 [created] => 2008405419 00:00:00
)
)

This sort of help isn't new: in fact, you can do that without the ContainableBehavior doing
something like this:

Containable really shines when you have complex associations, and you want to pare down
things that sit at the same level. The model's $recursive property is helpful if you want to hack
off an entire level of recursion, but not when you want to pick and choose what to keep at each
level. Let's see how it works by using the contain() method. The contain method's first
argument accepts the name, or an array of names, of the models to keep in the find operation.
If we wanted to fetch all posts and their related tags (without any comment information), we'd
try something like this:

1. $this4>Post4>find('all', array('contain' => 'Tag'));

1. $this4>Post4>contain('Comment.author');
2. $this4>Post4>find('all');
3. //or..
4. $this4>Post4>find('all', array('contain' => 'Comment.author'));

Again, we can use the contain key inside a find() call:

Without Containable, you'd end up needing to use the unbindModel() method of the model,
multiple times if you're paring off multiple models. Containable creates a cleaner way to
accomplish this same task.

Containable also goes a step deeper: you can filter the data of the associatedmodels. If you look
at the results of the original find() call, notice the author field in the Commentmodel. If you are
interested in the posts and the names of the comment authors—and nothing else—you could do
something like the following:

Here, we've told Containable to give us our post information, and just the author field of the
associated Commentmodel. The output of the find call might look something like this:

[0] => Array
 (
 [Post] => Array
 (
 [id] => 1
 [title] => First article
 [content] => aaa
 [created] => 2008405418 00:00:00
)
 [Comment] => Array
 (
 [0] => Array
 (
 [author] => Daniel
 [post_id] => 1
)
 [1] => Array
 (
 [author] => Sam
 [post_id] => 1
)
)
)
[1] => Array
 (...

As you can see, the Comment arrays only contain the author field (plus the post_id which is
needed by CakePHP to map the results).

You can also filter the associated Comment data by specifying a condition:

1. $this4>Post4>contain('Comment.author = "Daniel"');
2. $this4>Post4>find('all');
3. //or...
4. $this4>Post4>find('all', array('contain' => 'Comment.author = "Daniel"'))
;

1. $this4>Post4>find('all', array('contain' => array(
2. 'Comment' => array(
3. 'conditions' => array('Comment.author =' => "Daniel"),
4. 'order' => 'Comment.created DESC'
5.)
6.)));

This gives us a result that gives us posts with comments authored by Daniel:

[0] => Array
 (
 [Post] => Array
 (
 [id] => 1
 [title] => First article
 [content] => aaa
 [created] => 2008405418 00:00:00
)
 [Comment] => Array
 (
 [0] => Array
 (
 [id] => 1
 [post_id] => 1
 [author] => Daniel
 [email] => dan@example.com
 [website] => http://example.com
 [comment] => First comment
 [created] => 2008405418 00:00:00
)
)
)

Additional filtering can be performed by supplying the standard Model%>find() (http://
book.cakephp.org/view/66/models#find%449) options:

Here's an example of using the Containble behavior when you've got deep and complex model
relationships.

Let's consider the following model associations:

User4>Profile
User4>Account4>AccountSummary
User4>Post4>PostAttachment4>PostAttachmentHistory4>HistoryNotes
User4>Post4>Tag

This is how we retrieve the above associations with Containable:

1. $this4>User4>find('all', array(
2. 'contain'=>array(
3. 'Profile',
4. 'Account' => array(
5. 'AccountSummary'
6.),
7. 'Post' => array(
8. 'PostAttachment' => array(
9. 'fields' => array('id', 'name'),
10. 'PostAttachmentHistory' => array(
11. 'HistoryNotes' => array(
12. 'fields' => array('id', 'note')
13.)
14.)
15.),
16. 'Tag' => array(
17. 'conditions' => array('Tag.name LIKE' => '%happy%')
18.)
19.)
20.)
21.));

1. $this4>paginate['User'] = array(
2. 'contain' => array('Profile', 'Account'),
3. 'order' => 'User.username'
4.);
5. $users = $this4>paginate('User');

1. ./cake i18n

Keep in mind that 'contain' key is only used once in the main model, you don't use 'contain'
again for related models

When using 'fields' and 'contain' options � be careful to include all foreign keys that your query
directly or indirectly requires. Please also note that because Containable must to be attached to
all models used in containment, youmay consider attaching it to your AppModel.

Here's an example of how to contain associations when paginating.

6.3 Translate

TranslateBehavior is actually quite easy to setup and works out of the box with very little
configuration. In this section, you will learn how to add and setup the behavior to use in any
model.

6.3.1 Initializing the i18n Database Tables

You can either use the CakePHP console or you can manually create it. It is advised to use the
console for this, because it might happen that the layout changes in future versions of
CakePHP. Sticking to the console will make sure that you have the correct layout.

Select [I] which will run the i18n database intialization script. You will be asked if you want
to drop any existing and if you want to create it. Answer with yes if you are sure there is no i18n
table already, and answer with yes again to create the table.

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. var $actsAs = array(
5. 'Translate'
6.);
7. }
8. ?>

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. var $actsAs = array(
5. 'Translate' => array(
6. 'fieldOne', 'fieldTwo', 'and_so_on'
7.)
8.);
9. }
10. ?>

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. var $actsAs = array(
5. 'Translate' => array(
6. 'name'
7.)
8.);
9. }
10. ?>

6.3.2 Attaching the Translate Behavior to your Models

Add it to your model by using the $actsAs property like in the following example.

This will do nothing yet, because it expects a couple of options before it begins to work. You
need to define which fields of the current model should be tracked in the translation table we've
created in the first step.

6.3.3 Defining the Fields

You can set the fields by simply extending the 'Translate' value with another array, like so:

After you have done that (for example putting "name" as one of the fields) you already finished
the basic setup. Great! According to our current example the model should now look something
like this:

6.3.4 Conclusion

From now on each record update/creation will cause TranslateBehavior to copy the value of
"name" to the translation table (default: i18n) along with the current locale. A locale is the
identifier of the language, so to speak.

The current locale is the current value of Configure::read('Config.language'). The
value of Config.language is assigned in the L10n Class � unless it is already set. However, the
TranlateBehavior allows you to override this on�the�fly, which allows the user of your page to

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. var $actsAs = array(
5. 'Translate' => array(
6. 'name' => 'nameTranslation'
7.)
8.);
9. }
10. ?>

1. Array
2. (
3. [Post] => Array
4. (
5. [id] => 1
6. [name] => Beispiel Eintrag
7. [body] => lorem ipsum...
8. [locale] => de_de
9.)
10. [nameTranslation] => Array
11. (
12. [0] => Array
13. (
14. [id] => 1
15. [locale] => en_us
16. [model] => Post
17. [foreign_key] => 1
18. [field] => name
19. [content] => Example entry
20.)
21. [1] => Array
22. (
23. [id] => 2
24. [locale] => de_de
25. [model] => Post
26. [foreign_key] => 1
27. [field] => name
28. [content] => Beispiel Eintrag
29.)
30.)
31.)

create multiple versions without the need to change his preferences. More about this in the next
section.

6.3.5 Retrieve all translation records for a field

If you want to have all translation records attached to the current model record you simply
extend the field array in your behavior setup as shown below. The naming is completely up to
you.

With this setup the result of your find() should look something like this:

Note: The model record contains a virtual field called "locale". It indicates which locale is
used in this result.

1. $this4>Post4>bindTranslation(array ('name' => 'nameTranslation'));
2. $this4>Post4>find('all', array ('recursive'=>1)); // need at least
recursive 1 for this to work.

1. Array
2. (
3. [Post] => Array
4. (
5. [id] => 1
6. [name] => Beispiel Eintrag
7. [body] => lorem ipsum...
8. [locale] => de_de
9.)
10. [nameTranslation] => Array
11. (
12. [0] => Array
13. (
14. [id] => 1
15. [locale] => en_us
16. [model] => Post
17. [foreign_key] => 1
18. [field] => name
19. [content] => Example entry
20.)
21. [1] => Array
22. (
23. [id] => 2
24. [locale] => de_de
25. [model] => Post
26. [foreign_key] => 1
27. [field] => name
28. [content] => Beispiel Eintrag
29.)
30.)
31.)

6.3.5.1 Using the bindTranslation method

You can also retrieve all translations, only when you need them, using the bindTranslation
method

bindTranslation($fields, $reset)

$fields is a named�key array of field and association name, where the key is the translatable
field and the value is the fake association name.

With this setup the result of your find() should look something like this:

6.3.6 Saving in another language

You can force the model which is using the TranslateBehavior to save in a language other than
the on detected.

To tell a model in what language the content is going to be you simply change the value of the $
locale property on the model before you save the data to the database. You can do that either
in your controller or you can define it directly in the model.

1. <?php
2. class PostsController extends AppController {
3. var $name = 'Posts';
4.
5. function add() {
6. if ($this4>data) {
7. $this4>Post4>locale = 'de_de'; // we are going to save the
german version
8. $this4>Post4>create();
9. if ($this4>Post4>save($this4>data)) {
10. $this4>redirect(array('action' => 'index'));
11. }
12. }
13. }
14. }
15. ?>

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. var $actsAs = array(
5. 'Translate' => array(
6. 'name'
7.)
8.);
9.
10. // Option 1) just define the property directly
11. var $locale = 'en_us';
12.
13. // Option 2) create a simple method
14. function setLanguage($locale) {
15. $this4>locale = $locale;
16. }
17. }
18. ?>

Example A: In your controller

Example B: In your model

6.3.7 Multiple Translation Tables

If you expect a lot entries you probably wonder how to deal with a rapidly growing database
table. There are two properties introduced by TranslateBehavior that allow to specify which
"Model" to bind as the model containing the translations.

These are $translateModel and $translateTable.

Lets say we want to save our translations for all posts in the table "post_i18ns" instead of the
default "i18n" table. To do so you need to setup your model like this:

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. var $actsAs = array(
5. 'Translate' => array(
6. 'name'
7.)
8.);
9.
10. // Use a different model (and table)
11. var $translateModel = 'PostI18n';
12. }
13. ?>

1. <?php
2. class PostI18n extends AppModel {
3. var $displayField = 'field'; // important
4. }
5. // filename: post_i18n.php
6. ?>

Important is that you have to pluralize the table. It is now a usual model and can be treated
as such and thus comes with the conventions involved. The table schema itself must be
identical with the one generated by the CakePHP console script. To make sure it fits one could
just initialize a empty i18n table using the console and rename the table afterwards.

6.3.7.1 Create the TranslateModel

For this to work you need to create the actual model file in your models folder. Reason is that
there is no property to set the displayField directly in the model using this behavior yet.

Make sure that you change the $displayField to 'field'.

That's all it takes. You can also add all other model stuff here like $useTable. But for better
consistency we could do that in the model which actually uses this translation model. This is
where the optional $translateTable comes into play.

6.3.7.2 Changing the Table

If you want to change the name of the table you simply define $translateTable in your model,
like so:

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. var $actsAs = array(
5. 'Translate' => array(
6. 'name'
7.)
8.);
9.
10. // Use a different model
11. var $translateModel = 'PostI18n';
12.
13. // Use a different table for translateModel
14. var $translateTable = 'post_translations';
15. }
16. ?>

Please note that you can't use $translateTable alone. If you don't intend to use a custom $
translateModel then leave this property untouched. Reason is that it would break your
setup and show you a "Missing Table" message for the default I18n model which is created in
runtime.

6.4 Tree

It's fairly common to want to store hierarchical data in a database table. Examples of such data
might be categories with unlimited subcategories, data related to a multilevel menu system or a
literal representation of hierarchy such as is used to store access control objects with ACL
logic.

For small trees of data, or where the data is only a few levels deep it is simple to add a parent_
id field to your database table and use this to keep track of which item is the parent of what.
Bundled with cake however, is a powerful behavior which allows you to use the benefits of
MPTT logic (http://dev.mysql.com/tech+resources/articles/hierarchical+data.html)
without worrying about any of the intricacies of the technique � unless you want to ;).

6.4.1 Requirements

To use the tree behavior, your database table needs 3 fields as listed below (all are ints):

parent � default fieldname is parent_id, to store the id of the parent object
left � default fieldname is lft, to store the lft value of the current row.
right � default fieldname is rght, to store the rght value of the current row.

If you are familiar with MPTT logic youmay wonder why a parent field exists � quite simply it's
easier to do certain tasks if a direct parent link is stored on the database � such as finding direct
children.

6.4.2 Basic Usage

The tree behavior has a lot packed into it, but let's start with a simple example � create the
following database table and put some data in it:

CREATE TABLE categories (
id INTEGER(10) UNSIGNED NOT NULL AUTO_INCREMENT,
parent_id INTEGER(10) DEFAULT NULL,
lft INTEGER(10) DEFAULT NULL,

1. <?php
2. class CategoriesController extends AppController {
3. var $name = 'Categories';
4.
5. function index() {
6. $this4>data = $this4>Category4>generatetreelist(null,
null, null, ' ');
7. debug ($this4>data); die;
8. }
9. }
10. ?>

rght INTEGER(10) DEFAULT NULL,
name VARCHAR(255) DEFAULT '',
PRIMARY KEY (id)

);

INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(1, 'My Categories', NULL, 1, 30);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(2, 'Fun', 1, 2, 15);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(3, 'Sport', 2, 3, 8);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(4, 'Surfing', 3, 4, 5);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(5, 'Extreme knitting', 3, 6, 7);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(6, 'Friends', 2, 9, 14);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(7, 'Gerald', 6, 10, 11);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(8, 'Gwendolyn', 6, 12, 13);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(9, 'Work', 1, 16, 29);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(10, 'Reports', 9, 17, 22);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(11, 'Annual', 10, 18, 19);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(12, 'Status', 10, 20, 21);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(13, 'Trips', 9, 23, 28);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(14, 'National', 13, 24, 25);
INSERT INTO `categories` (`id`, `name`, `parent_id`, `lft`,
`rght`) VALUES(15, 'International', 13, 26, 27);

For the purpose of checking that everything is setup correctly, we can create a test method and
output the contents of our category tree to see what it looks like. With a simple controller:

an an even simpler model definition:

1. <?php
2. // app/models/category.php
3. class Category extends AppModel {
4. var $name = 'Category';
5. var $actsAs = array('Tree');
6. }
7. ?>

1. // pseudo controller code
2. $data['Category']['parent_id'] = 3;
3. $data['Category']['name'] = 'Skating';
4. $this4>Category4>save($data);

1. // pseudo controller code
2. $data = array();
3. $data['Category']['name'] = 'Other People\'s Categories';
4. $this4>Category4>save($data);

We can check what our category tree data looks like by visiting /categories You should see
something like this:

My Categories
Fun

Sport
Surfing
Extreme knitting

Friends
Gerald
Gwendolyn

Work
Reports

Annual
Status

Trips
National
International

6.4.2.1 Adding data

In the previous section, we used existing data and checked that it looked hierarchal via the
method generatetreelist. However, usually you would add your data in exactly the same
way as you would for any model. For example:

When using the tree behavior its not necessary to do any more than set the parent_id, and the
tree behavior will take care of the rest. If you don't set the parent_id, the tree behavior will add
to the tree making your new addition a new top level entry:

Running the above two code snippets would alter your tree as follows:

My Categories
Fun

Sport
Surfing
Extreme knitting
Skating New

Friends
Gerald

1. // pseudo controller code
2. $this4>Category4>id = 5; // id of Extreme knitting
3. $this4>Category4>save(array('name' =>'Extreme fishing'));

1. // pseudo controller code
2. $this4>Category4>id = 5; // id of Extreme fishing
3. $newParentId = $this4>Category4>field('id', array('name' => 'Other People
\'s Categories'));
4. $this4>Category4>save(array('parent_id' => $newParentId));

Gwendolyn
Work

Reports
Annual
Status

Trips
National
International

Other People's Categories New

6.4.2.2 Modifying data

Modifying data is as transparent as adding new data. If youmodify something, but do not
change the parent_id field � the structure of your data will remain unchanged. For example:

The above code did not affect the parent_id field � even if the parent_id is included in the data
that is passed to save if the value doesn't change, neither does the data structure. Therefore the
tree of data would now look like:

My Categories
Fun

Sport
Surfing
Extreme fishing Updated
Skating

Friends
Gerald
Gwendolyn

Work
Reports

Annual
Status

Trips
National
International

Other People's Categories

Moving data around in your tree is also a simple affair. Let's say that Extreme fishing does not
belong under Sport, but instead should be located under Other People's Categories. With the
following code:

As would be expected the structure would be modified to:

My Categories
Fun

Sport
Surfing
Skating

1. // pseudo controller code
2. $this4>Category4>id = 10;
3. $this4>Category4>delete();

Friends
Gerald
Gwendolyn

Work
Reports

Annual
Status

Trips
National
International

Other People's Categories
Extreme fishingMoved

6.4.2.3 Deleting data

The tree behavior provides a number of ways to manage deleting data. To start with the
simplest example; let's say that the reports category is no longer useful. To remove it and any
children it may have just call delete as you would for any model. For example with the
following code:

The category tree would be modified as follows:

My Categories
Fun

Sport
Surfing
Skating

Friends
Gerald
Gwendolyn

Work
Trips

National
International

Other People's Categories
Extreme fishing

6.4.2.4 Querying and using your data

Using andmanipulating hierarchical data can be a tricky business. In addition to the core find
methods, with the tree behavior there are a few more tree�orientated permutations at your
disposal.

Most tree behavior methods return and rely on data being sorted by the lft field. If you call
find() and do not order by lft, or call a tree behavior method and pass a sort order, youmay
get undesirable results.

6.4.2.4.1 Children

1. $allChildren = $this4>Category4>children(1); // a flat array with 11
items
2. // 44 or 44
3. $this4>Category4>id = 1;
4. $allChildren = $this4>Category4>children(); // a flat array with 11 items
5. // Only return direct children
6. $directChildren = $this4>Category4>children(1, true); // a flat array
with 2 items

1. $totalChildren = $this4>Category4>childCount(1); // will output 11
2. // 44 or 44
3. $this4>Category4>id = 1;
4. $directChildren = $this4>Category4>childCount(); // will output 11
5. // Only counts the direct descendants of this category
6. $numChildren = $this4>Category4>childCount(1, true); // will output 2

The childrenmethod takes the primary key value (the id) of a row and returns the children,
by default in the order they appear in the tree. The second optional parameter defines whether
or not only direct children should be returned. Using the example data from the previous
section:

If you want a recursive array use find('threaded')

6.4.2.4.2 Counting children

As with the method children, childCount takes the primary key value (the id) of a row and
returns how many children it has. The second optional parameter defines whether or not only
direct children are counted. Using the example data from the previous section:

6.4.2.4.3 generatetreelist

generatetreelist (&$model, $conditions=null, $keyPath=null, $
valuePath=null, $spacer= '_', $recursive=null)

This method will return data similar to find('list'), with an indented prefix to show the
structure of your data. Below is an example of what you can expect this method to return see the
api for the other find�like parameters.

array(
[1] => "My Categories",
[2] => "_Fun",
[3] => "__Sport",
[4] => "___Surfing",
[16] => "___Skating",
[6] => "__Friends",
[7] => "___Gerald",
[8] => "___Gwendolyn",
[9] => "_Work",
[13] => "__Trips",
[14] => "___National",
[15] => "___International",
[17] => "Other People's Categories",

1. $parent = $this4>Category4>getparentnode(2); //<4 id for fun
2. // $parent contains All categories

1. $parents = $this4>Category4>getpath(15);

[5] => "_Extreme fishing"
)

6.4.2.4.4 getparentnode

This convenience function will, as the name suggests, return the parent node for any node, or
false if the node has no parent (its the root node). For example:

6.4.2.4.5 getpath

The 'path' when refering to hierachial data is how you get from where you are to the top. So for
example the path from the category "International" is:

My Categories
...
Work

Trips
...
International

Using the id of "International" getpath will return each of the parents in turn (starting from the
top).

// contents of $parents
array(

[0] => array('Category' => array('id' => 1, 'name' => 'My
Categories', ..)),

[1] => array('Category' => array('id' => 9, 'name' =>
'Work', ..)),

[2] => array('Category' => array('id' => 13, 'name' =>
'Trips', ..)),

[3] => array('Category' => array('id' => 15, 'name' =>
'International', ..)),
)

6.4.3 Advanced Usage

The tree behavior doesn't only work in the background, there are a number of specific methods
defined in the behavior to cater for all your hierarchical data needs, and any unexpected
problems that might arise in the process.

6.4.3.1 moveDown

1. function movedown($name = null, $delta = null) {
2. $cat = $this4>Category4>findByName($name);
3. if (empty($cat)) {
4. $this4>Session4>setFlash('There is no category named ' . $
name);
5. $this4>redirect(array('action' => 'index'), null, true);
6. }
7.
8. $this4>Category4>id = $cat['Category']['id'];
9.
10. if ($delta > 0) {
11. $this4>Category4>moveDown($this4>Category4>id, abs($delta));
12. } else {
13. $this4>Session4>setFlash('Please provide the number of
positions the field should be moved down.');
14. }
15.
16. $this4>redirect(array('action' => 'index'), null, true);
17. }

Used to move a single node down the tree. You need to provide the ID of the element to be
moved and a positive number of how many positions the node should be moved down. All child
nodes for the specified node will also be moved.

Here is an example of a controller action (in a controller named Categories) that moves a
specified node down the tree:

For example, if you'd like to move the "Sport" category one position down, you would request: /
categories/movedown/Sport/1.

6.4.3.2 moveUp

Used to move a single node up the tree. You need to provide the ID of the element to be moved
and a positive number of how many positions the node should be moved up. All child nodes
will also be moved.

Here's an example of a controller action (in a controller named Categories) that moves a node
up the tree:

1. function moveup($name = null, $delta = null){
2. $cat = $this4>Category4>findByName($name);
3. if (empty($cat)) {
4. $this4>Session4>setFlash('There is no category named ' . $
name);
5. $this4>redirect(array('action' => 'index'), null, true);
6. }
7.
8. $this4>Category4>id = $cat['Category']['id'];
9.
10. if ($delta > 0) {
11. $this4>Category4>moveup($this4>Category4>id, abs($delta));
12. } else {
13. $this4>Session4>setFlash('Please provide a number of
positions the category should be moved up.');
14. }
15.
16. $this4>redirect(array('action' => 'index'), null, true);
17.
18. }

For example, if you would like to move the category "Gwendolyn" up one position you would
request /categories/moveup/Gwendolyn/1. Now the order of Friends will be Gwendolyn,
Gerald.

6.4.3.3 removeFromTree

6.4.3.4 reorder

This method can be used to sort hierarchical data.

6.4.4 Data Integrity

Due to the nature of complex self referential data structures such as trees and linked lists, they
can occasionally become broken by a careless call. Take heart, for all is not lost! The Tree
Behavior contains several previously undocumented features designed to recover from such
situations.

These functions that may save you some time are:

recover(&$model, $mode = 'parent', $missingParentAction = null)

The mode parameter is used to specify the source of info that is valid/correct. The opposite
source of data will be populated based upon that source of info. E.g. if the MPTT fields are
corrupt or empty, with the $mode 'parent' the values of the parent_id field will be used to
populate the left and right fields. The missingParentAction parameter only applies to "parent"
mode and determines what to do if the parent field contains an id that is not present.

reorder(&$model, $options = array())

Reorders the nodes (and child nodes) of the tree according to the field and direction specified in
the parameters. This method does not change the parent of any node.

The options array contains the values 'id' => null, 'field' => $model�>displayField, 'order' =>
'ASC', and 'verify' => true, by default.

verify(&$model)

Returns true if the tree is valid otherwise an array of (type, incorrect left/right index, message).

1. class WidgetsController extends AppController {
2. var $name = 'Widgets';
3. var $helpers = array('Html','Ajax','Javascript');
4. }

1. echo $javascript4>link('prototype');
2. echo $javascript4>link('scriptaculous');

1. $ajax4>whatever();

1. class WidgetsController extends AppController {
2. var $name = 'Widgets';
3. var $helpers = array('Html','Ajax','Javascript');
4. var $components = array('RequestHandler');
5. }

7 Core Helpers

Helpers are the component�like classes for the presentation layer of your application. They
contain presentational logic that is shared between many views, elements, or layouts.

This section describes each of the helpers that come with CakePHP such as Form, Html,
JavaScript and RSS.

ReadHelpers (http://book.cakephp.org/view/98/helpers) to learn more about helpers
and how you can build your own helpers.

7.1 AJAX

The AjaxHelper utilizes the ever�popular Prototype and script.aculo.us libraries for Ajax
operations and client side effects. To use the AjaxHelper, youmust have a current version of the
JavaScript libraries fromwww.prototypejs.org (http://www.prototypejs.org/) and
http://script.aculo.us (http://script.aculo.us/) placed in /app/webroot/js/. In addition,
youmust include the Prototype and script.aculo.us JavaScript libraries in any layouts or views
that require AjaxHelper functionality.

You'll need to include the Ajax and Javascript helpers in your controller:

Once you have the javascript helper included in your controller, you can use the javascript
helper link() method to include Prototype and Scriptaculous:

Now you can use the Ajax helper in your view:

If theRequestHandler Component (http://book.cakephp.org/view/174/request+
handling) is included in the controller then CakePHP will automatically apply the Ajax layout
when an action is requested via AJAX

7.1.1 AjaxHelper Options

Most of the methods of the AjaxHelper allow you to supply an $options array. You can use this
array to configure how the AjaxHelper behaves. Before we cover the specific methods in the

helper, let’s look at the different options available through this special array. You’ll want to
refer to this section as you start using the methods in the AjaxHelper later on.

7.1.1.1 General Options

$option keys Description

$options
['evalScripts']

Determines if script tags in the returned content are evaluated. Set to
true by default.

$options
['frequency']

The number of seconds between interval based checks.

$options
['indicator']

The DOM id of an element to show while a request is loading and to
hide when a request is completed.

$options
['position']

To insert rather than replace, use this option to specify an insertion
position of top, bottom, after, or before.

$options
['update']

The id of the DOM element to be updated with returned content.

$options['url'] The url of the controller/action that you want to call.

$options['type']Indicate whether the request should be 'synchronous' or
'asynchronous' (default).

$options['with']A URL�encoded string which will be added to the URL for get methods
or in to the post body for any other method. Example:
x=1&foo=bar&y=2. The parameters will be available in $this4
>params['form'] or available in $this4>data depending on
formatting. For more information see the Prototype Serialize (http://
www.prototypejs.org/api/form/serialize)method.

7.1.1.2 Callback Options

Callback options allow you to call JavaScript functions at specific points in the request process.
If you’re looking for a way to inject a bit of logic before, after, or during your AjaxHelper
operations, use these callbacks to set things up.

$options keys Description

$options
['condition']

JavaScript code snippet that needs to evaluate to true before request is
initiated.

1. <div id="post">
2. </div>
3. <?php echo $ajax4>link(
4. 'View Post',
5. array('controller' => 'posts', 'action' => 'view', 1),
6. array('update' => 'post')
7.);
8. ?>

$options['before'] Executed before request is made. A common use for this callback is to enable
the visibility of a progress indicator.

$options
['confirm']

Text to display in a JavaScript confirmation alert before proceeding.

$options
['loading']

Callback code to be executed while data is being fetched from server.

$options['after'] JavaScript called immediately after request has run; fires before the $options
['loading'] callback runs.

$options['loaded'] Callback code to be executed when the remote document has been received
by client.

$options
['interactive']

Called when the user can interact with the remote document, even though it
has not finished loading.

$options
['complete']

JavaScript callback to be run when XMLHttpRequest is complete.

7.1.2 Methods

7.1.2.1 link

link(string $title, string $href, array $options, string $confirm,
boolean $escapeTitle)

Returns a link to a remote action defined by $options['url'] or $href that's called in the
background using XMLHttpRequest when the link is clicked. The result of that request can
then be inserted into a DOM object whose id can be specified with $options['update'].

If $options['url'] is blank the href is used instead

Example:

By default, these remote requests are processed asynchronously during which various callbacks
can be triggered

Example:

1. <div id="post">
2. </div>
3. <?php echo $ajax4>link(
4. 'View Post',
5. array('controller' => 'posts', 'action' => 'post', 1),
6. array('update' => 'post', 'complete' => 'alert("Hello World")')
7.);
8. ?>

1. <div id="post">
2. </div>
3. <?php echo $ajax4>link(
4. 'View Post',
5. array('controller' => 'posts', 'action' => 'view', 1),
6. array('update' => 'post', 'position' => 'top')
7.);
8. ?>

1. <div id="post">
2. </div>
3. <?php echo $ajax4>link(
4. 'Delete Post',
5. array('controller' => 'posts', 'action' => 'delete', 1),
6. array('update' => 'post'),
7. 'Do you want to delete this post?'
8.);
9. ?>

To use synchronous processing specify $options['type'] = 'synchronous'.

To automatically set the ajax layout include the RequestHandler component in your controller

By default the contents of the target element are replaced. To change this behaviour set the $
options['position']

Example:

$confirm can be used to call up a JavaScript confirm() message before the request is run.
Allowing the user to prevent execution.

Example:

7.1.2.2 remoteFunction

remoteFunction(array $options);

This function creates the JavaScript needed to make a remote call. It is primarily used as a
helper for link(). This is not used very often unless you need to generate some custom scripting.

The $options for this function are the same as for the linkmethod

Example:

1. <div id="post">
2. </div>
3. <script type="text/javascript">
4. <?php echo $ajax4>remoteFunction(
5. array(
6. 'url' => array('controller' => 'posts', 'action' => 'view', 1)
,
7. 'update' => 'post'
8.)
9.); ?>
10. </script>

1. <?php
2. $remoteFunction = $ajax4>remoteFunction(
3. array(
4. 'url' => array('controller' => 'posts', 'action' => 'view', 1),
5. 'update' => 'post')
6.);
7. ?>
8. <div id="post" onmouseover="<?php echo $remoteFunction; ?>" >
9. Mouse Over This
10. </div>

1. <div id="post">
2. </div>
3. <?php
4. echo $ajax4>remoteTimer(
5. array(
6. 'url' => array('controller' => 'posts', 'action' => 'view', 1),
7. 'update' => 'post', 'complete' => 'alert("request completed")',
8. 'position' => 'bottom', 'frequency' => 5
9.)
10.);
11. ?>

It can also be assigned to HTML Event Attributes:

If $options['update'] is not passed, the browser will ignore the server response.

7.1.2.3 remoteTimer

remoteTimer(array $options)

Periodically calls the action at $options['url'], every $options['frequency']
seconds. Usually used to update a specific div (specified by $options['update']) with the
result of the remote call. Callbacks can be used.

remoteTimer is the same as the remoteMethod except for the extra $options
['frequency']

Example:

The default $options['frequency'] is 10 seconds

1. $ajax4>form('edit','post',array('model'=>'User','update'=>'UserInfoDiv'))
;

1. $ajax4>form(array('type' => 'post',
2. 'options' => array(
3. 'model'=>'User',
4. 'update'=>'UserInfoDiv',
5. 'url' => array(
6. 'controller' => 'comments',
7. 'action' => 'edit'
8.)
9.)
10.));

1. <?php echo $form4>create('Post'); ?>
2. <?php $titles = array(1 => 'Tom', 2 => 'Dick', 3 => 'Harry'); ?>
3. <?php echo $form4>input('title', array('options' => $titles)) ?>
4. </form>
5. <?php
6. echo $ajax4>observeField('PostTitle',
7. array(
8. 'url' => array('action' => 'edit'),
9. 'frequency' => 0.2,
10.)
11.);
12. ?>

7.1.2.4 form

form(string $action, string $type, array $options)

Returns a form tag that submits to $action using XMLHttpRequest instead of a normal HTTP
request via $type ('post' or 'get'). Otherwise, form submission will behave exactly like normal:
data submitted is available at $this�>data inside your controllers. If $options['update'] is
specified, it will be updated with the resulting document. Callbacks can be used.

The options array should include the model name e.g.

Alternatively, if you need to cross post to another controller from your form:

7.1.2.5 submit

submit(string $title, array $options)

Returns a submit button that submits the form with the DOM id specified by $options['with']
via XMLHttpRequest.

7.1.2.6 observeField

observeField(string $fieldId, array $options)

Observes the field with the DOM id specified by $field_id (every $options['frequency']
seconds) andmakes an XMLHttpRequest when its contents have changed.

1. function autoComplete() {
2. //Partial strings will come from the autocomplete field as
3. //$this4>data['Post']['subject']
4. $this4>set('posts', $this4>Post4>find('all', array(
5. 'conditions' => array(
6. 'Post.subject LIKE' => $this4>data['Post']['subject']
.'%'
7.),
8. 'fields' => array('subject')
9.)));
10. $this4>layout = 'ajax';
11. }

1.
2. <?php foreach($posts as $post): ?>
3. <?php echo $post['Post']['subject']; ?>
4. <?php endforeach; ?>
5.

1. <?php echo $form4>create('User', array('url' => '/users/index')); ?>
2. <?php echo $ajax4>autoComplete('Post.subject', '/posts/autoComplete')
?>
3. <?php echo $form4>end('View Post')?>

observeField uses the same options as link

The field to send up can be set using $options['with']. This defaults to
Form.Element.serialize('$fieldId'). Data submitted is available at $this4>data
inside your controllers. Callbacks can be used with this function.

To send up the entire form when the field changes use $options['with'] =
Form.serialize($('Form ID'))

7.1.2.7 observeForm

observeForm(string $fieldId, array $options)

Similar to observeField(), but operates on an entire form identified by the DOM id $form_id.
The supplied $options are the same as observeField(), except the default value of the $options
['with'] option evaluates to the serialized (request string) value of the form.

7.1.2.8 autoComplete

autoComplete(string $fieldId, string $url, array $options)

Renders a text field with $fieldId with autocomplete. The remote action at $url should return a
suitable list of autocomplete terms. Often an unordered list is used for this. First, you need to
set up a controller action that fetches and organizes the data you'll need for your list, based on
user input:

Next, create app/views/posts/auto_complete.ctp that uses that data and creates an
unordered list in (X)HTML:

Finally, utilize autoComplete() in a view to create your auto�completing form field:

Once you've got the autoComplete() call working correctly, use CSS to style the auto�complete
suggestion box. Youmight end up using something similar to the following:

div.auto_complete {
 position :absolute;
 width :250px;
 background4color :white;
 border :1px solid #888;
 margin :0px;
 padding :0px;
}
li.selected { background4color: #ffb; }

7.1.2.9 isAjax

isAjax()

Allows you to check if the current request is a Prototype Ajax request inside a view. Returns a
boolean. Can be used for presentational logic to show/hide blocks of content.

7.1.2.10 drag & drop

drag(string $id, array $options)

Makes a Draggable element out of the DOM element specified by $id. For more information on
the parameters accepted in $options see http://github.com/madrobby/scriptaculous/
wikis/draggable (http://github.com/madrobby/scriptaculous/wikis/draggable) .

Common options might include:

$options
keys

Description

$options
['handle']

Sets whether the element should only be draggable by an embedded handle.
The value must be an element reference or element id or a string referencing a
CSS class value. The first child/grandchild/etc. element found within the
element that has this CSS class value will be used as the handle.

$options
['revert']

If set to true, the element returns to its original position when the drags ends.
Revert can also be an arbitrary function reference, called when the drag ends.

$options
['constraint']

Constrains the drag to either 'horizontal' or 'vertical', leave blank for no
constraints.

drop(string $id, array $options)

Makes the DOM element specified by $id able to accept dropped elements. Additional
parameters can be specified with $options. For more information see http://github.com/
madrobby/scriptaculous/wikis/droppables (http://github.com/madrobby/
scriptaculous/wikis/droppables) .

Common options might include:

$options keys Description

$options['accept']
Set to a string or javascript array of strings describing CSS classes that the
droppable element will accept. The drop element will only accept elements
of the specified CSS classes.

$options
['containment']

The droppable element will only accept the dragged element if it is
contained in the given elements (element ids). Can be a string or a
javascript array of id references.

$options
['overlap']

If set to 'horizontal' or 'vertical', the droppable element will only react to a
draggable element if it is overlapping the droparea by more than 50% in
the given axis.

$options
['onDrop']

A javascript call back that is called when the dragged element is dropped
on the droppable element.

dropRemote(string $id, array $options)

Makes a drop target that creates an XMLHttpRequest when a draggable element is dropped on
it. The $options array for this function are the same as those specified for drop() and link().

7.1.2.11 slider

slider(string $id, string $track_id, array $options)

Creates a directional slider control. For more information see http://wiki.github.com/
madrobby/scriptaculous/slider (http://wiki.github.com/madrobby/scriptaculous/
slider) .

Common options might include:

$options keys Description

$options['axis'] Sets the direction the slider will move in. 'horizontal' or 'vertical'.
Defaults to horizontal

$options
['handleImage']

The id of the image that represents the handle. This is used to swap out
the image src with disabled image src when the slider is enabled. Used in
conjunction with handleDisabled.

$options
['increment']

Sets the relationship of pixels to values. Setting to 1 will make each pixel
adjust the slider value by one.

$options
['handleDisabled']

The id of the image that represents the disabled handle. This is used to
change the image src when the slider is disabled. Used in conjunction
handleImage.

$options['change']
$options
['onChange']

JavaScript callback fired when the slider has finishedmoving, or has its
value changed. The callback function receives the slider's current value
as a parameter.

$options['slide']
$options['onSlide']

JavaScript callback that is called whenever the slider is moved by
dragging. It receives the slider's current value as a parameter.

7.1.2.12 editor

editor(string $id, string $url, array $options)

Creates an in�place editor at DOM id. The supplied $url should be an action that is
responsible for saving element data. For more information and demos see http://
github.com/madrobby/scriptaculous/wikis/ajax+inplaceeditor (http://
github.com/madrobby/scriptaculous/wikis/ajax+inplaceeditor) .

Common options might include:

$options keys Description

$options
['collection']

Activate the 'collection' mode of in�place editing. $options
['collection'] takes an array which is turned into options for the
select. To learn more about collection see http://github.com/
madrobby/scriptaculous/wikis/ajax+
inplacecollectioneditor (http://github.com/madrobby/
scriptaculous/wikis/ajax+inplacecollectioneditor) .

$options['callback'] A function to execute before the request is sent to the server. This
can be used to format the information sent to the server. The
signature is function(form, value)

$options['okText'] Text of the submit button in edit mode

$options
['cancelText']

The text of the link that cancels editing

$options
['savingText']

The text shown while the text is sent to the server

$options['formId']

$options
['externalControl']

$options['rows'] The row height of the input field

$options['cols'] The number of columns the text area should span

$options['size'] Synonym for ‘cols’ when using single�line

$options
['highlightcolor']

The highlight color

1. <div id="in_place_editor_id">Text To Edit</div>
2. <?php
3. echo $ajax4>editor(
4. "in_place_editor_id",
5. array(
6. 'controller' => 'Posts',
7. 'action' => 'update_title',
8. $id
9.),
10. array()
11.);
12. ?>

$options
['highlightendcolor']

The color which the highlight fades to

$options
['savingClassName']

$options
['formClassName']

$options
['loadingText']

$options
['loadTextURL']

Example

7.1.2.13 sortable

sortable(string $id, array $options)

Makes a list or group of floated objects contained by $id sortable. The options array supports a
number of parameters. To find out more about sortable see http://wiki.github.com/
madrobby/scriptaculous/sortable (http://wiki.github.com/madrobby/scriptaculous/
sortable) .

Common options might include:

$options keys Description

$options['tag'] Indicates what kind of child elements of the container will be made sortable.
Defaults to 'li'.

$options['only'] Allows for further filtering of child elements. Accepts a CSS class.

$options
['overlap']

Either 'vertical' or 'horizontal'. Defaults to vertical.

$options
['constraint']

Restrict the movement of the draggable elements. accepts 'horizontal' or
'vertical'. Defaults to vertical.

$options
['handle']

Makes the created Draggables use handles, see the handle option on
Draggables.

$options
['onUpdate']

Called when the drag ends and the Sortable's order is changed in any way.
When dragging from one Sortable to another, the callback is called once on
each Sortable.

$options
['hoverclass']

Give the created droppable a hoverclass.

$options
['ghosting']

If set to true, dragged elements of the sortable will be cloned and appear as a
ghost, instead of directly manipulating the original element.

7.2 Cache

The Cache helper assists in caching entire layouts and views, saving time repetitively retrieving
data. View Caching in Cake temporarily stores parsed layouts and views with the storage
engine of choice. It should be noted that the Cache helper works quite differently than other
helpers. It does not have methods that are directly called. Instead a view is marked with cache
tags indicating which blocks of content should not be cached.

When a URL is requested, Cake checks to see if that request string has already been cached. If
it has, the rest of the url dispatching process is skipped. Any nocache blocks are processed
normally and the view is served. This creates a big savings in processing time for each request
to a cached URL as minimal code is executed. If Cake doesn't find a cached view, or the cache
has expired for the requested URL it continues to process the request normally.

7.2.1 General Caching

Caching is intended to be a means of temporary storage to help reduce load on the server. For
example you could store the results of a time�expensive database query so that it is not required
to run on every page load.

With this in mind caching is not permanent storage and should never be used to permanently
store anything. And only cache things that can be regenerated when needed.

7.2.2 Cache Engines in Cake

New in 1.2 are several cache engines or cache backends. These interface transparently with the
cache helper, allowing you to store view caches in a multitude of media without worrying about
the specifics of that media. The choice of cache engine is controlled through the app/config/
core.php config file. Most options for each caching engine are listed in the core.php config file
andmore detailed information on each caching engine can be found in the Caching Section.

1. var $helpers = array('Cache');

1. var $cacheAction = array(
2. 'view/23' => 21600,
3. 'view/48' => 36000,
4. 'view/52' => 48000
5.);

1. var $cacheAction = array(
2. 'archives/' => '60000'
3.);

1. var $cacheAction = "1 hour";

File
The File Engine is the default caching engine used by cake. It writes flat files to
the filesystem and it has several optional parameters but works well with the
defaults.

APC The APC engine implements theAlternative PHP Cache (http://php.net/
apc) opcode Cacher. Like XCache, this engine caches the compiled PHP opcode.

XCache
The XCache caching engine is functionally similar to APC other than it
implements theXCache (http://xcache.lighttpd.net/) opcode caching engine.
It requires the entry of a user and password to work properly.

Memcache

The Memcache engine works with a memcaching server allowing you to create a
cache object in systemmemory. More information on memcaching can be found
on php.net (http://www.php.net/memcache) andmemcached (http://
www.danga.com/memcached/)

7.2.3 Cache Helper Configuration

View Caching and the Cache Helper have several important configuration elements. They are
detailed below.

To use the cache helper in any view or controller, youmust first uncomment and set
Configure::Cache.check to true in core.php of your app/config folder. If this is not set to true,
then the cache will not be checked or created.

7.2.4 Caching in the Controller

Any controllers that utilize caching functionality need to include the CacheHelper in their $
helpers array.

You also need to indicate which actions need caching, and how long each action will be
cached. This is done through the $cacheAction variable in your controllers. $cacheAction
should be set to an array which contains the actions you want cached, and the duration in
seconds you want those views cached. The time value can be expressed in a strtotime() format.
(ie. "1 hour", or "3 minutes").

Using the example of an ArticlesController, that receives a lot of traffic that needs to be cached.

Cache frequently visited Articles for varying lengths of time

Cache an entire action in this case a large listing of articles

Cache every action in the controller using a strtotime() friendly time to indicate Controller wide
caching time.

1. <cake:nocache>
2. <?php if ($session4>check('User.name')) : ?>
3. Welcome, <?php echo $session4>read('User.name')?>.
4. <?php else: ?>
5. <?php echo $html4>link('Login', 'users/login')?>
6. <?php endif; ?>
7. </cake:nocache>

7.2.5 Marking Non,Cached Content in Views

There will be times when you don't want an entire view cached. For example, certain parts of
the page may look different whether a user is currently logged in or browsing your site as a
guest.

To indicate blocks of content that are not to be cached, wrap them in <cake:nocache> </
cake:nocache> like so:

It should be noted that once an action is cached, the controller method for the action will not
be called � otherwise what would be the point of caching the page. Therefore, it is not possible
to wrap <cake:nocache> </cake:nocache> around variables which are set from the
controller as they will be null.

7.2.6 Clearing the Cache

It is important to remember that the Cake will clear a cached view if a model used in the cached
view is modified. For example, if a cached view uses data from the Post model, and there has
been an INSERT, UPDATE, or DELETE query made to a Post, the cache for that view is
cleared, and new content is generated on the next request.

If you need to manually clear the cache, you can do so by calling Cache::clear(). This will clear
all cached data, including non�view data.

7.3 Form

The FormHelper is a new addition to CakePHP. Most of the heavy lifting in form creation is
now done using this new class, rather than (now deprecated) methods in the HtmlHelper. The
FormHelper focuses on creating forms quickly, in a way that will streamline validation, re�
population and layout. The FormHelper is also flexible � it will do almost everything for you
automagically, or you can use specific methods to get only what you need.

7.3.1 Creating Forms

The first method you’ll need to use in order to take advantage of the FormHelper is create().
This special method outputs an opening form tag.

create(string $model = null, array $options = array())

All parameters are optional. If create() is called with no parameters supplied, it assumes
you are building a form that submits to the current controller, via either the add() or edit()
action. The default method for form submission is POST. The form element also is returned
with a DOM ID. The ID is generated using the name of the model, and the name of the
controller action, CamelCased. If I were to call create() inside a UsersController view, I’d
see something like the following output in the rendered view:

1. <form id="UserAddForm" method="post" action="/users/add">

1. <?php echo $form4>create('Recipe'); ?>
2.
3. //Output:
4. <form id="RecipeAddForm" method="post" action="/recipes/add">

1. // controllers/recipes_controller.php:
2. <?php
3. function edit($id = null) {
4. if (empty($this4>data)) {
5. $this4>data = $this4>Recipe4>findById($id);
6. } else {
7. // Save logic goes here
8. }
9. }
10. ?>
11.
12. // views/recipes/edit.ctp:
13. // Since $this4>data['Recipe']['id'] = 5, we should get an edit form
14. <?php echo $form4>create('Recipe'); ?>
15.
16. //Output:
17. <form id="RecipeEditForm" method="post" action="/recipes/edit/5">
18. <input type="hidden" name="_method" value="PUT" />

You can also pass false for $model. This will place your form data into the array: $this4
>data (instead of in the sub�array: $this4>data['Model']). This can be handy for short
forms that may not represent anything in your database.

The create()method allows us to customize much more using the parameters, however.
First, you can specify a model name. By specifying a model for a form, you are creating that
form's context. All fields are assumed to belong to this model (unless otherwise specified), and
all models referenced are assumed to be associated with it. If you do not specify a model, then it
assumes you are using the default model for the current controller.

This will POST the form data to the add() action of RecipesController. However, you can also
use the same logic to create an edit form. The FormHelper uses the $this4>data property to
automatically detect whether to create an add or edit form. If $this4>data contains an array
element named after the form's model, and that array contains a non�empty value of the
model's primary key, then the FormHelper will create an edit form for that record. For example,
if we browse to http://site.com/recipes/edit/5, we might get the following:

Since this is an edit form, a hidden input field is generated to override the default HTTP
method.

The $options array is where most of the form configuration happens. This special array can
contain a number of different key�value pairs that affect the way the form tag is generated.

7.3.1.1 $options[‘type’]

This key is used to specify the type of form to be created. Valid values include ‘post’, ‘get’, ‘file’,
‘put’ and ‘delete’.

Supplying either ‘post’ or ‘get’ changes the form submission method accordingly.

1. <?php echo $form4>create('User', array('type' => 'get')); ?>
2.
3. //Output:
4. <form id="UserAddForm" method="get" action="/users/add">

1. <?php echo $form4>create('User', array('type' => 'file')); ?>
2.
3. //Output:
4. <form id="UserAddForm" enctype="multipart/form4data" method="post"
action="/users/add">

1. <?php echo $form4>create('User', array('action' => 'login')); ?>
2.
3. //Output:
4. <form id="UserLoginForm" method="post" action="/users/login">
5. </form>

1. <?php echo $form4>create(null, array('url' => '/recipes/add')); ?>
2. // or
3. <?php echo $form4>create(null, array('url' => array('controller' =>
'recipes', 'action' => 'add'))); ?>
4.
5. //Output:
6. <form method="post" action="/recipes/add">
7.
8. <?php echo $form4>create(null, array(
9. 'url' => 'http://www.google.com/search',
10. 'type' => 'get'
11.)); ?>
12.
13. //Output:
14. <form method="get" action="http://www.google.com/search">

Specifying ‘file’ changes the form submission method to ‘post’, and includes an enctype of
“multipart/form�data” on the form tag. This is to be used if there are any file elements inside
the form. The absence of the proper enctype attribute will cause the file uploads not to function.

When using ‘put’ or ‘delete’, your form will be functionally equivalent to a 'post' form, but when
submitted, the HTTP request method will be overridden with 'PUT' or 'DELETE', respectively.
This allows CakePHP to emulate proper REST support in web browsers.

7.3.1.2 $options[‘action’]

The action key allows you to point the form to a specific action in your current controller. For
example, if you’d like to point the form to the login() action of the current controller, you would
supply an $options array like the following:

7.3.1.3 $options[‘url’]

If the desired form action isn’t in the current controller, you can specify a URL for the form
action using the ‘url’ key of the $options array. The supplied URL can be relative to your
CakePHP application, or can point to an external domain.

1. <?php echo $form4>create(); ?>
2.
3. <!44 Form elements go here 44>
4.
5. <?php echo $form4>end(); ?>

1. <?php echo $form4>end('Finish'); ?>
2.
3. Output:
4.
5. <div class="submit">
6. <input type="submit" value="Finish" />
7. </div>
8. </form>

7.3.1.4 $options[‘default’]

If ‘default’ has been set to boolean false, the form’s submit action is changed so that pressing
the submit button does not submit the form. If the form is meant to be submitted via AJAX,
setting ‘default’ to false suppresses the form’s default behavior so you can grab the data and
submit it via AJAX instead.

7.3.2 Closing the Form

The FormHelper also includes an end() method that completes the formmarkup. Often, end()
only outputs a closing form tag, but using end() also allows the FormHelper to insert needed
hidden form elements other methods may be depending on.

If a string is supplied as the first parameter to end(), the FormHelper outputs a submit button
named accordingly along with the closing form tag.

7.3.3 Automagic Form Elements

First, let’s look at some of the more automatic form creation methods in the FormHelper. The
main method we’ll look at is input(). This method will automatically inspect the model field it
has been supplied in order to create an appropriate input for that field.

input(string $fieldName, array $options = array())
Column Type Resulting Form Field

string (char, varchar, etc.) text

boolean, tinyint(1) checkbox

text textarea

text, with name of password, passwd, or
psword

password

date day, month, and year selects

datetime, timestamp day, month, year, hour, minute, andmeridian
selects

time hour, minute, andmeridian selects

For example, let’s assume that my User model includes fields for a username (varchar),
password (varchar), approved (datetime) and quote (text). I can use the input() method of the
FormHelper to create appropriate inputs for all of these form fields.

1. <?php echo $form4>create(); ?>
2.
3. <?php
4. echo $form4>input('username'); //text
5. echo $form4>input('password'); //password
6. echo $form4>input('approved'); //day, month, year, hour,
minute, meridian
7. echo $form4>input('quote'); //textarea
8. ?>
9.
10. <?php echo $form4>end('Add'); ?>

1. echo $form4>input('birth_dt', array('label' => 'Date of birth'
2. , 'dateFormat' => 'DMY'
3. , 'minYear' => date('Y') 4 70
4. , 'maxYear' => date('Y') 4 18));

1. $this4>set('groups', $this4>User4>Group4>find('list'));

1. echo $form4>input('Group');

1. $this4>set('groups', $this4>User4>Group4>find('list'));

1. echo $form4>input('group_id');

1. <input type="text" id="ModelnameFieldname" name="data[Modelname]
[fieldname]">

1. echo $form4>input('Modelname.fieldname');

A more extensive example showing some options for a date field:

Besides the specific input options found below you can specify any html attribute (for instance
onfocus). For more information on $options and $htmlAttributes seeHTMLHelper (http://
book.cakephp.org/view/205/HTML) .

And to round off, here's an example for creating a hasAndBelongsToMany select. Assume that
User hasAndBelongsToMany Group. In your controller, set a camelCase plural variable (group
�> groups in this case, or ExtraFunkyModel �> extraFunkyModels) with the select options. In
the controller action you would put the following:

And in the view a multiple select can be expected with this simple code:

If you want to create a select field while using a belongsTo� or hasOne�Relation, you can add
the following to your Users�controller (assuming your User belongsTo Group):

Afterwards, add the following to your form�view:

7.3.3.1 Field naming convention

The Form helper is pretty smart. Whenever you specify a field name with the form helper
methods, it'll automatically use the current model name to build an input with a format like the
following:

You can manually specify the model name by passing in Modelname.fieldname as the first
parameter.

1. <?php
2. echo $form4>input('Modelname.0.fieldname');
3. echo $form4>input('Modelname.1.fieldname');
4. ?>
5.
6. <input type="text" id="Modelname0Fieldname" name="data[Modelname][0]
[fieldname]">
7. <input type="text" id="Modelname1Fieldname" name="data[Modelname][1]
[fieldname]">

1. <?php echo $form4>input('field', array('type' => 'file')); ?>
2.
3. Output:
4.
5. <div class="input">
6. <label for="UserField">Field</label>
7. <input type="file" name="data[User][field]" value="" id="UserField" /
>
8. </div>

1. <?php echo $form4>input('field', array(
2. 'before' => '44before44',
3. 'after' => '44after44',
4. 'between' => '44between444'
5.));?>
6.
7. Output:
8.
9. <div class="input">
10. 44before44
11. <label for="UserField">Field</label>
12. 44between444
13. <input name="data[User][field]" type="text" value="" id="UserField" />
14. 44after44
15. </div>

If you need to specify multiple fields using the same field name, thus creating an array that can
be saved in one shot with saveAll(), use the following convention:

7.3.3.2 $options[‘type’]

You can force the type of an input (and override model introspection) by specifying a type. In
addition to the field types found in the table above, you can also create ‘file’, and ‘password’
inputs.

7.3.3.3 $options[‘before’], $options[‘between’], $options[‘separator’] and
$options[‘after’]

Use these keys if you need to inject some markup inside the output of the input() method.

For radio type input the 'separator' attribute can be used to inject markup to separate each
input/label pair.

1. <?php echo $form4>input('field', array(
2. 'before' => '44before44',
3. 'after' => '44after44',
4. 'between' => '44between444',
5. 'separator' => '44separator44',
6. 'options' => array('1', '2')
7.));?>
8.
9. Output:
10.
11. <div class="input">
12. 44before44
13. <input name="data[User][field]" type="radio" value="1" id="UserField1" /
>
14. <label for="UserField1">1</label>
15. 44separator44
16. <input name="data[User][field]" type="radio" value="2" id="UserField2" /
>
17. <label for="UserField2">2</label>
18. 44between444
19. 44after44
20. </div>

1. <?php echo $form4>input('field', array('options' => array(1,2,3,4,5))); ?
>

1. <?php echo $form4>input('field', array('options' => array(
2. 'Value 1'=>'Label 1',
3. 'Value 2'=>'Label 2',
4. 'Value 3'=>'Label 3'
5.))); ?>

For date and datetime type elements the 'separator' attribute can be used to change the
string between select elements. Defaults to '�'.

7.3.3.4 $options[‘options’]

This key allows you to manually specify options for a select input, or for a radio group. Unless
the ‘type’ is specified as ‘radio’, the FormHelper will assume that the target output is a select
input.

Output:

<div class="input">
 <label for="UserField">Field</label>
 <select name="data[User][field]" id="UserField">
 <option value="0">1</option>
 <option value="1">2</option>
 <option value="2">3</option>
 <option value="3">4</option>
 <option value="4">5</option>
 </select>
</div>

Options can also be supplied as key�value pairs.

1. <?php echo $form4>input('field', array('options' => array(
2. 'Label1' => array(
3. 'Value 1'=>'Label 1',
4. 'Value 2'=>'Label 2'
5.),
6. 'Label2' => array(
7. 'Value 3'=>'Label 3'
8.)
9.))); ?>

1. $form4>input('Model.field', array('type' => 'select', 'multiple' =>
true));
2. $form4>input('Model.field', array('type' => 'select', 'multiple' =>
'checkbox'));

Output:

<div class="input">
 <label for="UserField">Field</label>
 <select name="data[User][field]" id="UserField">
 <option value="Value 1">Label 1</option>
 <option value="Value 2">Label 2</option>
 <option value="Value 3">Label 3</option>
 </select>
</div>

If you would like to generate a select with optgroups, just pass data in hierarchical format.
Works on multiple checkboxes and radio buttons too, but instead of optgroups wraps elements
in fieldsets.

Output:

<div class="input">
 <label for="UserField">Field</label>
 <select name="data[User][field]" id="UserField">
 <optgroup label="Label1">
 <option value="Value 1">Label 1</option>
 <option value="Value 2">Label 2</option>
 </optgroup>
 <optgroup label="Label2">
 <option value="Value 3">Label 3</option>
 </optgroup>
 </select>
</div>

7.3.3.5 $options[‘multiple’]

If ‘multiple’ has been set to true for an input that outputs a select, the select will allow multiple
selections. Alternatively set ‘multiple’ to ‘checkbox’ to output a list of related check boxes.

7.3.3.6 $options[‘maxLength’]

1. echo $form4>input('User.name', array('div' => 'class_name'));

1. echo $form4>input('User.name', array('div' => array('id' =>
'mainDiv', 'title' => 'Div Title', 'style' => 'display:block')));

1. <?php echo $form4>input('User.name', array('div' => false));?>

1. <?php echo $form4>input('User.name', array('label' => 'The User Alias'
));?>

Defines the maximum number of characters allowed in a text input.

7.3.3.7 $options[‘div’]

Use this option to set attributes of the input's containing div. Using a string value will set the
div's class name. An array will set the div's attributes to those specified by the array's keys/
values. Alternatively, you can set this key to false to disable the output of the div.

Setting the class name:

Output:

<div class="class_name">
<label for="UserName">Name</label>
<input name="data[User][name]" type="text" value=""

id="UserName" />
</div>

Setting multiple attributes:

Output:

<div class="input text" id="mainDiv" title="Div Title"
style="display:block">

<label for="UserName">Name</label>
<input name="data[User][name]" type="text" value=""

id="UserName" />
</div>

Disabling div output:

Output:

 <label for="UserName">Name</label>
 <input name="data[User][name]" type="text" value=""
id="UserName" />

7.3.3.8 $options[‘label’]

Set this key to the string you would like to be displayed within the label that usually
accompanies the input.

Output:

1. <?php echo $form4>input('User.name', array('label' => false)); ?>

1. <?php echo $form4>input('User.name', array('label' => array('class' =>
'thingy', 'text' => 'The User Alias'))); ?>

1. $form4>input('Model.field', array('error' => false));

<div class="input">
 <label for="UserName">The User Alias</label>
 <input name="data[User][name]" type="text" value=""
id="UserName" />
</div>

Alternatively, set this key to false to disable the output of the label.

Output:

<div class="input">
 <input name="data[User][name]" type="text" value=""
id="UserName" />
</div>

Set this to an array to provide additional options for the label element. If you do this, you can
use a text key in the array to customize the label text.

Output:

<div class="input">
 <label for="UserName" class="thingy">The User Alias</label>
 <input name="data[User][name]" type="text" value=""
id="UserName" />
</div>

7.3.3.9 $options['legend']

Some inputs like radio buttons will be automatically wrapped in a fieldset with a legend title
derived from the fields name. The title can be overridden with this option. Setting this option to
false will completely eliminate the fieldset.

7.3.3.10 $options[‘id’]

Set this key to force the value of the DOM id for the input.

7.3.3.11 $options['error']

Using this key allows you to override the default model error messages and can be used, for
example, to set i18n messages. It has a number of suboptions which control the wrapping
element and wrapping element class name.

To disable error message output set the error key to false.

1. $form4>input('Model.field', array('error' => array('wrap' => 'span',
'class' => 'bzzz')));

1. $form4>input('Model.field', array('error' => array('tooShort' => __
('This is not long enough', true))));

1. <?php
2. echo $form4>input('ingredient', array('default'=>'Sugar'));
3. ?>

1. <?php
2. $sizes = array('s'=>'Small', 'm'=>'Medium', 'l'=>'Large');
3. echo $form4>input('size', array('options'=>$sizes, 'default'=>'m'));
4. ?>

1. echo $form4>input('close_time', array('type' => 'time', 'selected' =>
'13:30:00'));

1. echo $form4>input('textarea', array('rows' => '5', 'cols' => '5'));

To modify the wrapping element type and its class, use the following format:

To override the model error messages use an associate array with the keyname of the validation
rule:

As seen above you can set the error message for each validation rule you have in your models.
In addition you can provide i18n messages for your forms.

7.3.3.12 $options['default']

Used to set a default value for the input field. The value is used if the data passed to the form
does not contain a value for the field (or if no data is passed at all).

Example usage:

Example with select field (Size "Medium" will be selected as default):

You cannot use default to check a checkbox � instead youmight set the value in $this4
>data in your controller or $form4>data in your view.

Date and datetime fields' default values can be set by using the 'selected' key.

7.3.3.13 $options[‘selected’]

Used in combination with a select�type input (i.e. For types select, date, time, datetime). Set
‘selected’ to the value of the item you wish to be selected by default when the input is rendered.

7.3.3.14 $options[‘rows’], $options[‘cols’]

These two keys specify the number of rows and columns in a textarea input.

Output:

1. <div class="input text">
2. <label for="FormTextarea">Textarea</label>
3. <textarea name="data[Form][textarea]" cols="5" rows="5"
id="FormTextarea" >
4. </textarea>
5. </div>

1. <?php echo $form4>input('field', array('options' => array(1,2,3,4,5),
'empty' => '(choose one)')); ?>

7.3.3.15 $options[‘empty’]

If set to true, forces the input to remain empty.

When passed to a select list, this creates a blank option with an empty value in your drop down
list. If you want to have a empty value with text displayed instead of just a blank option, pass in
a string to empty.

Output:

<div class="input">
 <label for="UserField">Field</label>
 <select name="data[User][field]" id="UserField">
 <option value="">(choose one)</option>
 <option value="0">1</option>
 <option value="1">2</option>
 <option value="2">3</option>
 <option value="3">4</option>
 <option value="4">5</option>
 </select>
</div>

If you need to set the default value in a password field to blank, use 'value' => '' instead.

Options can also supplied as key�value pairs.

7.3.3.16 $options[‘timeFormat’]

Used to specify the format of the select inputs for a time�related set of inputs. Valid values
include ‘12’, ‘24’, and ‘none’.

7.3.3.17 $options[‘dateFormat’]

Used to specify the format of the select inputs for a date�related set of inputs. Valid values
include ‘DMY’, ‘MDY’, ‘YMD’, and ‘NONE’.

7.3.3.18 $options['minYear'], $options['maxYear']

1. <?php echo $form4>input('Model.time', array('type' => 'time', 'interval'
=> 15)); ?>

1. echo $form4>create('Document', array('enctype' => 'multipart/form4data')
);
2. // OR
3. echo $form4>create('Document', array('type' => 'file'));

1. echo $form4>input('Document.submittedfile', array('between'=>'<br /
>','type'=>'file'));
2. // or
3. echo $form4>file('Document.submittedfile');

1. $this4>data['Document']['submittedfile'] = array(
2. 'name' => conference_schedule.pdf
3. 'type' => application/pdf
4. 'tmp_name' => C:/WINDOWS/TEMP/php1EE.tmp
5. 'error' => 0
6. 'size' => 41737
7.);

Used in combination with a date/datetime input. Defines the lower and/or upper end of values
shown in the years select field.

7.3.3.19 $options['interval']

This option specifies the number of minutes between each option in the minutes select box.

Would create 4 options in the minute select. One for each 15 minutes.

7.3.4 File Fields

To add a file upload field to a form, youmust first make sure that the form enctype is set to
"multipart/form�data", so start off with a create function such as the following.

Next add either of the two lines to your form view file.

Due to the limitations of HTML itself, it is not possible to put default values into input fields of
type 'file'. Each time the form is displayed, the value inside will be empty.

Upon submission, file fields provide an expanded data array to the script receiving the form
data.

For the example above, the values in the submitted data array would be organized as follows, if
the CakePHP was installed on a Windows server. 'tmp_name' will have a different path in a
Unix environment.

This array is generated by PHP itself, so for more detail on the way PHP handles data passed
via file fields read the PHPmanual section on file uploads (http://php.net/
features.file+upload) .

7.3.4.1 Validating Uploads

1. // Based on comment 8 from: http://bakery.cakephp.org/articles/view/
improved4advance4validation4with4parameters
2. function isUploadedFile($params){
3. $val = array_shift($params);
4. if ((isset($val['error']) && $val['error'] == 0) ||
5. (!empty($val['tmp_name']) && $val['tmp_name'] != 'none'))
6. {
7. return is_uploaded_file($val['tmp_name']);
8. } else {
9. return false;
10. }
11. }

1. <?php echo $form4>text('username', array('class' => 'users')); ?>

1. <?php echo $form4>checkbox('done'); ?>

Below is an example validation method you could define in your model to validate whether a
file has been successfully uploaded.

7.3.5 Form Element,Specific Methods

The rest of the methods available in the FormHelper are for creating specific form elements.
Many of these methods also make use of a special $options parameter. In this case, however, $
options is used primarily to specify HTML tag attributes (such as the value or DOM id of an
element in the form).

Will output:

<input name="data[User][username]" type="text" class="users"
id="UserUsername" />

7.3.5.1 checkbox

checkbox(string $fieldName, array $options)

Creates a checkbox form element. This method also generates an associated hidden form input
to force the submission of data for the specified field.

Will output:

<input type="hidden" name="data[User][done]" value="0"
id="UserDone_" />
<input type="checkbox" name="data[User][done]" value="1"
id="UserDone" />

7.3.5.2 button

button(string $title, array $options = array())

1. <?php
2. echo $form4>button('A Button');
3. echo $form4>button('Another Button', array('type'=>'button'));
4. echo $form4>button('Reset the Form', array('type'=>'reset'));
5. echo $form4>button('Submit Form', array('type'=>'submit'));
6. ?>

1. <?php
2. echo $form4>year('purchased',2000,date('Y'));
3. ?>

Creates an HTML button with the specified title and a default type of "button". Setting $
options['type'] will output one of the three possible button types:

1. button: Creates a standard push button (the default).
2. reset: Creates a form reset button.
3. submit: Same as the $form4>submitmethod.

Will output:

<input type="button" value="A Button" />
<input type="button" value="Another Button" />
<input type="reset" value="Reset the Form" />
<input type="Submit" value="Submit Form" />

7.3.5.3 year

year(string $fieldName, int $minYear, int $maxYear, mixed $
selected, array $attributes, boolean $showEmpty)

Creates a select element populated with the years from $minYear to $maxYear, with the $
selected year selected by default. HTML attributes may be supplied in $attributes. If $
showEmpty is false, the select will not include an empty option.

Will output:

<select name="data[User][purchased][year]" id="UserPurchasedYear">
<option value=""></option>
<option value="2009">2009</option>
<option value="2008">2008</option>
<option value="2007">2007</option>
<option value="2006">2006</option>
<option value="2005">2005</option>
<option value="2004">2004</option>
<option value="2003">2003</option>

<option value="2002">2002</option>
<option value="2001">2001</option>
<option value="2000">2000</option>
</select>

1. <?php
2. echo $form4>month('mob');
3. ?>

1. <?php
2. echo $form4>day('created');
3. ?>

7.3.5.4 month

month(string $fieldName, mixed $selected, array $attributes,
boolean $showEmpty)

Creates a select element populated with month names.

Will output:

<select name="data[User][mob][month]" id="UserMobMonth">
<option value=""></option>
<option value="01">January</option>
<option value="02">February</option>
<option value="03">March</option>
<option value="04">April</option>
<option value="05">May</option>
<option value="06">June</option>
<option value="07">July</option>
<option value="08">August</option>
<option value="09">September</option>
<option value="10">October</option>
<option value="11">November</option>
<option value="12">December</option>
</select>

7.3.5.5 dateTime

dateTime(string $fieldName, string $dateFormat = ‘DMY’, $timeFormat
= ‘12’, mixed $selected, array $attributes, boolean $showEmpty)

Creates a set of select inputs for date and time. Valid values for $dateformat are ‘DMY’, ‘MDY’,
‘YMD’ or ‘NONE’. Valid values for $timeFormat are ‘12’, ‘24’, and ‘NONE’.

7.3.5.6 day

day(string $fieldName, mixed $selected, array $attributes, boolean
$showEmpty)

Creates a select element populated with the (numerical) days of the month.

To create an empty option with prompt text of your choosing (e.g. the first option is 'Day'), you
can supply the text as the final parameter as follows:

Will output:

<select name="data[User][created][day]" id="UserCreatedDay">
<option value=""></option>
<option value="01">1</option>
<option value="02">2</option>
<option value="03">3</option>
...
<option value="31">31</option>
</select>

7.3.5.7 hour

hour(string $fieldName, boolean $format24Hours, mixed $selected,
array $attributes, boolean $showEmpty)

Creates a select element populated with the hours of the day.

7.3.5.8 minute

minute(string $fieldName, mixed $selected, array $attributes,
boolean $showEmpty)

Creates a select element populated with the minutes of the hour.

7.3.5.9 meridian

meridian(string $fieldName, mixed $selected, array $attributes,
boolean $showEmpty)

Creates a select element populated with ‘am’ and ‘pm’.

7.3.5.10 error

error(string $fieldName, string $text, array $options)

Shows a validation error message, specified by $text, for the given field, in the event that a
validation error has occurred.

7.3.5.11 file

file(string $fieldName, array $options)

Creates a file input.

1. <?php
2. echo $form4>create('User',array('type'=>'file'));
3. echo $form4>file('avatar');
4. ?>

1. <?php
2. echo $form4>hidden('id');
3. ?>

1. <?php
2. if ($form4>isFieldError('gender')){
3. echo $form4>error('gender');
4. }
5. ?>

1. <?php
2. echo $form4>label('status');
3. ?>

Will output:

<form enctype="multipart/form4data" method="post" action="/users/
add">
<input name="data[User][avatar]" value="" id="UserAvatar"
type="file">

When using $form4>file(), remember to set the form encoding�type, by setting the type
option to 'file' in $form4>create()

7.3.5.12 hidden

hidden(string $fieldName, array $options)

Creates a hidden form input. Example:

Will output:

<input name="data[User][id]" value="10" id="UserId" type="hidden">

7.3.5.13 isFieldError

isFieldError(string $fieldName)

Returns true if the supplied $fieldName has an active validation error.

When using $form4>input(), errors are rendered by default.

7.3.5.14 label

label(string $fieldName, string $text, array $attributes)

Creates a label tag, populated with $text.

1. <?php
2. echo $form4>password('password');
3. ?>

1. <?php
2. $options=array('M'=>'Male','F'=>'Female');
3. $attributes=array('legend'=>false);
4. echo $form4>radio('gender',$options,$attributes);
5. ?>

Will output:

<label for="UserStatus">Status</label>

7.3.5.15 password

password(string $fieldName, array $options)

Creates a password field.

Will output:

<input name="data[User][password]" value="" id="UserPassword"
type="password">

7.3.5.16 radio

radio(string $fieldName, array $options, array $attributes)

Creates a radio button input. Use $attributes['value'] to set which value should be
selected default.

Use $attributes['separator'] to specify HTML in between radio buttons (e.g.
).

Radio elements are wrapped with a label and fieldset by default. Set $attributes
['legend'] to false to remove them.

Will output:

<input name="data[User][gender]" id="UserGender_" value=""
type="hidden">
<input name="data[User][gender]" id="UserGenderM" value="M"
type="radio">
<label for="UserGenderM">Male</label>
<input name="data[User][gender]" id="UserGenderF" value="F"
type="radio">
<label for="UserGenderF">Female</label>

7.3.5.17 select

1. <?php
2. $options=array('M'=>'Male','F'=>'Female');
3. echo $form4>select('gender',$options)
4. ?>

1. <?php
2. echo $form4>submit();
3. ?>

1. <?php
2. echo $form4>submit('ok.png');
3. ?>

select(string $fieldName, array $options, mixed $selected, array $
attributes, boolean $showEmpty)

Creates a select element, populated with the items in $options, with the option specified by $
selected shown as selected by default. Set $showEmpty to false if you do not want an empty
select option to be displayed.

Will output:

<select name="data[User][gender]" id="UserGender">
<option value=""></option>
<option value="M">Male</option>
<option value="F">Female</option>
</select>

7.3.5.18 submit

submit(string $caption, array $options)

Creates a submit button with caption $caption. If the supplied $caption is a URL to an
image (it contains a ‘.’ character), the submit button will be rendered as an image.

It is enclosed between div tags by default; you can avoid this by declaring $options
['div'] = false.

Will output:

<div class="submit"><input value="Submit" type="submit"></div>

You can also pass a relative or absolute url to an image for the caption parameter instead of
caption text.

Will output:

<div class="submit"><input type="image" src="/img/ok.png"></div>

7.3.5.19 text

text(string $fieldName, array $options)

1. <?php
2. echo $form4>text('first_name');
3. ?>

1. <?php
2. echo $form4>textarea('notes');
3. ?>

1. function output($str) {
2. echo $str;
3. }

1. Desired attributes: <tag class="someClass" />
2. Array parameter: array('class'=>'someClass')
3.
4. Desired attributes: <tag name="foo" value="bar" />
5. Array parameter: array('name' => 'foo', 'value' => 'bar')

Creates a text input field.

Will output:

<input name="data[User][first_name]" value="" id="UserFirstName"
type="text">

7.3.5.20 textarea

textarea(string $fieldName, array $options)

Creates a textarea input field.

Will output:

<textarea name="data[User][notes]" id="UserNotes"></textarea>

7.4 HTML

The role of the HtmlHelper in CakePHP is to make HTML�related options easier, faster, and
more resilient to change. Using this helper will enable your application to be more light on its
feet, andmore flexible on where it is placed in relation to the root of a domain.

The HtmlHelper's role has changed significantly since CakePHP 1.1. Form related methods
have been deprecated andmoved to the new FormHelper. If you're looking for help with HTML
forms, check out the new FormHelper.

Before we look at HtmlHelper's methods, you'll need to know about a few configuration and
usage situations that will help you use this class. First in an effort to assuage those who dislike
short tags (<?= ?>) or many echo() calls in their view code all methods of HtmlHelper are
passed to the output() method. If you wish to enable automatic output of the generated helper
HTML you can simply implement output() in your AppHelper.

Doing this will remove the need to add echo statements to your view code.

Many HtmlHelper methods also include a $htmlAttributes parameter, that allow you to tack on
any extra attributes on your tags. Here are a few examples of how to use the $htmlAttributes
parameter:

1. <?php echo $html4>charset(); ?>

1. <?php echo $html4>charset('ISO4885941'); ?>

1. <?php echo $html4>css('forms'); ?>

1. <?php echo $html4>css(array('forms','tables','menu')); ?>

The HtmlHelper is available in all views by default. If you're getting an error informing you
that it isn't there, it's usually due to its name being missing from a manually configured $
helpers controller variable.

7.4.1 Inserting Well,Formatted elements

The most important task the HtmlHelper accomplishes is creating well formedmarkup. Don't
be afraid to use it often � you can cache views in CakePHP in order to save some CPU cycles
when views are being rendered and delivered. This section will cover some of the methods of
the HtmlHelper and how to use them.

7.4.1.1 charset

charset(string $charset=null)

Used to create a meta tag specifying the document's character. Defaults to UTF�8.

Will output:

<meta http4equiv="Content4Type" content="text/html;
charset=utf48" />

Alternatively,

Will output:

<meta http4equiv="Content4Type" content="text/html;
charset=ISO4885941" />

7.4.1.2 css

css(mixed $path, string $rel = null, array $htmlAttributes = array
(), boolean $inline = true)

Creates a link(s) to a CSS style�sheet. If $inline is set to false, the link tags are added to the $
scripts_for_layout variable which you can print inside the head tag of the document.

This method of CSS inclusion assumes that the CSS file specified resides inside the /app/
webroot/css directory.

Will output:

<link rel="stylesheet" type="text/css" href="/css/forms.css" />

The first parameter can be an array to include multiple files.

1. <?php echo $html4>meta(
2. 'favicon.ico',
3. '/favicon.ico',
4. array('type' => 'icon')
5.);?> //Output (line breaks added) </p>
6. <link
7. href="http://example.com/favicon.ico"
8. title="favicon.ico" type="image/x4icon"
9. rel="alternate"
10. />
11.
12. <?php echo $html4>meta(
13. 'Comments',
14. '/comments/index.rss',
15. array('type' => 'rss'));
16. ?>
17.
18. //Output (line breaks added)
19. <link
20. href="http://example.com/comments/index.rss"
21. title="Comments"
22. type="application/rss+xml"
23. rel="alternate"
24. />

Will output:

<link rel="stylesheet" type="text/css" href="/css/forms.css" />
<link rel="stylesheet" type="text/css" href="/css/tables.css" />
<link rel="stylesheet" type="text/css" href="/css/menu.css" />

7.4.1.3 meta

meta(string $type, string $url = null, array $attributes = array(),
boolean $inline = true)

This method is handy for linking to external resources like RSS/Atom feeds and favicons. Like
css(), you can specify whether or not you'd like this tag to appear inline or in the head tag using
the fourth parameter.

Use the "type" attribute to control type tag to be generated:

This method is handy for linking to external resources like RSS/Atom feeds and favicons. Like
css(), you can specify whether or not you'd like this tag to appear inline or in the head tag using
the fourth parameter.

If you set the "type" attribute using the $htmlAttributes parameter, CakePHP contains a few
shortcuts:

type translated value

html text/html

rss application/rss+xml

atom application/atom+xml

icon image/x�icon

1. <?php echo $html4>meta(
2. 'keywords',
3. 'enter any meta keyword here'
4.);?>
5. //Output <meta name="keywords" content="enter any meta keyword here"/>
6. //
7. <?php echo $html4>meta(
8. 'description',
9. 'enter any meta description here'
10.);?>
11. //Output <meta name="description" content="enter any meta description
here"/>

1. <?php echo $html4>docType(); ?>
2. <!DOCTYPE html PUBLIC "4//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml14strict.dtd">
3.
4. <?php echo $html4>docType('html44trans'); ?>
5. <!DOCTYPE HTML PUBLIC "4//W3C//DTD HTML 4.01 Transitional//EN" "http://
www.w3.org/TR/html4/loose.dtd">

1. <?php echo $html4>style(array(
2. 'background' => '#633',
3. 'border4bottom' => '1px solid #000',
4. 'padding' => '10px'
5.)); ?>

This method can also be used to add the meta keywords and descriptions. Example:

7.4.1.4 doctype

docType(string $type = 'xhtml4strict')

Prints out a (X)HTML doctype tag. Supply the doctype according to the following table:

type translated value

html text/html

html4�strict HTML4 Strict

html4�trans HTML4 Transitional

html4�frame HTML4 Frameset

xhtml�strict XHTML1 Strict

xhtml�trans XHTML1 Transitional

xhtml�frame XHTML1 Frameset

xhtml11 XHTML 1.1

7.4.1.5 style

style(array $data, boolean $inline = true)

Builds CSS style definitions based on the keys and values of the array passed to the method.
Especially handy if your CSS file is dynamic.

1. <?php echo $html4>image('cake_logo.png', array('alt' => 'CakePHP'))?>

1. <?php echo $html4>image("recipes/6.jpg", array(
2. "alt" => "Brownies",
3. 'url' => array('controller' => 'recipes', 'action' => 'view', 6)
4.)); ?>

Will output:

 background:#633;
 border4bottom:1px solid #000;
 padding:10px;

7.4.1.6 image

image(string $path, array $htmlAttributes = array())

Creates a formatted image tag. The path supplied should be relative to /app/webroot/img/.

Will output:

To create an image link specify the link destination using the url option in $
htmlAttributes.

Will output:

7.4.1.7 link

link(string $title, mixed $url = null, array $htmlAttributes =
array(), string $confirmMessage = false, boolean $escapeTitle =
true)

General purpose method for creating HTML links.

1. <?php echo $html4>link('Enter', '/pages/home', array('class'=>'button'))
; ?>
2.
3. //Output
4. Enter
5.
6. <?php echo $html4>link(
7. 'Delete',
8. array('controller'=>'recipes', 'action'=>'delete', 6),
9. array(),
10. "Are you sure you wish to delete this recipe?"
11.);?>
12.
13. //Output
14. <a href="/recipes/delete/6" onclick="return confirm('Are you sure you
wish to delete this recipe?');">Delete
15.
16.
17. //Query strings can also be created with link()
18. <?php echo $html4>link('View image', array(
19. 'controller' => 'images',
20. 'action' => 'view',
21. 1,
22. '?' => array('height' => 400, 'width' => 500))
23.);
24. //Output
25. View image

1. <?php
2. echo $html4>link(
3. $html4>image("recipes/6.jpg", array("alt" => "Brownies")),
4. "recipes/view/6",
5. array('escape'=>false)
6.);
7. echo $html4>link(
8. $html4>image("recipes/6.jpg", array("alt" => "Brownies")),
9. "recipes/view/6",
10. null, null, false
11.);
12. ?>

HTML special characters in $title will be converted to HTML entities. To disable this
conversion, set the escape option to false in the $htmlAttributes, or set $escapeTitle to
false.

Both will output:

7.4.1.8 tag

tag(string $tag, string $text, array $htmlAttributes, boolean $
escape = false)

1. <?php echo $html4>tag('span', 'Hello World.', array('class' => 'welcome')
);?>
2.
3. //Output
4. Hello World
5.
6. //No text specified.
7. <?php echo $html4>tag('span', null, array('class' => 'welcome'));?>
8.
9. //Output
10.

1. <?php echo $html4>div('error', 'Please enter your credit card number.');?
>
2.
3. //Output
4. <div class="error">Please enter your credit card number.</div>

1. <?php echo $html4>para(null, 'Hello World.');?>
2.
3. //Output
4. <p>Hello World.</p>

Returns text wrapped in a specified tag. If no text is then only the opening <tag> is returned.

7.4.1.9 div

div(string $class, string $text, array $htmlAttributes, boolean $
escape = false)

Used for creating div�wrapped sections of markup. The first parameter specifies a CSS class,
and the second is used to supply the text to be wrapped by div tags. If the last parameter has
been set to true, $text will be printed HTML�escaped.

If no text is specified, only an opening div tag is returned.

7.4.1.10 para

para(string $class, string $text, array $htmlAttributes, boolean $
escape = false)

Returns a text wrapped in a CSS�classed <p> tag. If no text is supplied, only a starting <p> tag
is returned.

7.4.1.11 tableHeaders

tableHeaders(array $names, array $trOptions = null, array $
thOptions = null)

Creates a row of table header cells to be placed inside of <table> tags.

1. <?php echo $html4>tableHeaders(array('Date','Title','Active'));?> //
Output
2. <tr><th>Date</th><th>Title</th><th>Active</th></tr>
3.
4. <?php echo $html4>tableHeaders(
5. array('Date','Title','Active'),
6. array('class' => 'status'),
7. array('class' => 'product_table')
8.);?>
9.
10. //Output
11. <tr class="status">
12. <th class="product_table">Date</th>
13. <th class="product_table">Title</th>
14. <th class="product_table">Active</th>
15. </tr>

7.4.1.12 tableCells

tableCells(array $data, array $oddTrOptions = null, array $
evenTrOptions = null, $useCount = false, $continueOddEven = true)

Creates table cells, in rows, assigning <tr> attributes differently for odd� and even�numbered
rows. Wrap a single table cell within an array() for specific <td>�attributes.

1. <?php echo $html4>tableCells(array(
2. array('Jul 7th, 2007', 'Best Brownies', 'Yes'),
3. array('Jun 21st, 2007', 'Smart Cookies', 'Yes'),
4. array('Aug 1st, 2006', 'Anti4Java Cake', 'No'),
5.));
6. ?>
7.
8. //Output
9. <tr><td>Jul 7th, 2007</td><td>Best Brownies</td><td>Yes</td></tr>
10. <tr><td>Jun 21st, 2007</td><td>Smart Cookies</td><td>Yes</td></tr>
11. <tr><td>Aug 1st, 2006</td><td>Anti4Java Cake</td><td>No</td></tr>
12.
13. <?php echo $html4>tableCells(array(
14. array('Jul 7th, 2007', array('Best Brownies', array
('class'=>'highlight')) , 'Yes'),
15. array('Jun 21st, 2007', 'Smart Cookies', 'Yes'),
16. array('Aug 1st, 2006', 'Anti4Java Cake', array('No', array
('id'=>'special'))),
17.));
18. ?>
19.
20. //Output
21. <tr><td>Jul
7th, 2007</td><td class="highlight">Best
Brownies</td><td>Yes</td></tr>
22. <tr><td>Jun 21st, 2007</td><td>Smart Cookies</td><td>Yes</td></tr>
23. <tr><td>Aug 1st, 2006</td><td>Anti4Java Cake</td><td id="special">No</
td></tr>
24.
25. <?php echo $html4>tableCells(
26. array(
27. array('Red', 'Apple'),
28. array('Orange', 'Orange'),
29. array('Yellow', 'Banana'),
30.),
31. array('class' => 'darker')
32.);
33. ?>
34.
35. //Output
36. <tr class="darker"><td>Red</td><td>Apple</td></tr>
37. <tr><td>Orange</td><td>Orange</td></tr>
38. <tr class="darker"><td>Yellow</td><td>Banana</td></tr>

7.4.1.13 url

url(mixed $url = NULL, boolean $full = false)

Returns an URL pointing to a combination of controller and action. If $url is empty, it returns
the REQUEST_URI, otherwise it generates the url for the controller and action combo. If full is
true, the full base URL will be prepended to the result.

1. <?php echo $html4>url(array("controller" => "posts",
2. "action" => "foo",
3. "bar" => 1));?>
4.
5. //Output
6. /posts/foo/bar:1

1. <?php echo $html4>url('/posts/foo/bar:1'); ?>
2.
3. //Output
4. /cakeinstall/posts/foo/bar:1

Also returns a given url (starting with '/') with the full base URL prepended.

7.5 Javascript

The Javascript helper is used to aid in creating well formatted related javascript tags and
codeblocks. There are several methods some of which are designed to work with the
Prototype (http://www.prototypejs.org/) Javascript library.

7.5.1 Methods

codeBlock($script, $options = array
('allowCache'=>true,'safe'=>true,'inline'=>true), $safe)

string $script � The JavaScript to be wrapped in SCRIPT tags
array $options � Set of options:

allowCache: boolean, designates whether this block is cacheable using the
current cache settings.
safe: boolean, whether this block should be wrapped in CDATA tags. Defaults to
helper's object configuration.
inline: whether the block should be printed inline, or written to cached for later
output (i.e. $scripts_for_layout).

boolean $safe � DEPRECATED. Use $options['safe'] instead

codeBlock returns a formatted script element containing $script. But can also return null if
Javascript helper is set to cache events. See JavascriptHelper::cacheEvents(). And can write in
$scripts_for_layout if you set $options['inline'] to false.

blockEnd()

Ends a block of cached Javascript. Can return either a end script tag, or empties the buffer,
adding the contents to the cachedEvents array. Its return value depends on the cache settings.
See JavascriptHelper::cacheEvents()

link($url, $inline)

mixed $url � String URL to JavaScript file, or an array of URLs.
boolean $inline If true, the <script> tag will be printed inline, otherwise it will be
printed in $scripts_for_layout

Creates a javascript link to a single or many javascript files. Can output inline or in $
scripts_for_layout.

escapeString($string)

string $script � String that needs to get escaped.

Escape a string to be JavaScript friendly. Allowing it to safely be used in javascript blocks.

The characters that are escaped are:

"\r\n" => '\n'
"\r" => '\n'
"\n" => '\n'
'"' => '\"'
"'" => "\\'"

event($object, $event, $observer, $useCapture)

string $object � DOM Object to be observed.
string $event � type of event to observe ie 'click', 'over'.
string $observer � Javascript function to call when event occurs.
array $options � Set options: useCapture, allowCache, safe

boolean $options['useCapture'] � Whether to fire the event in the capture or
bubble phase of event handling. Defaults false
boolean $options['allowCache'] � See JavascriptHelper::cacheEvents()
boolean $options['safe'] � Indicates whether <script /> blocks should be written
'safely,' i.e. wrapped in CDATA blocks

Attach a javascript event handler specified by $event to an element DOM element specified by $
object. Object does not have to be an ID reference it can refer to any valid javascript object or
CSS selectors. If a CSS selector is used the event handler is cached and should be retrieved with
JavascriptHelper::getCache(). This method requires the Prototype library.

cacheEvents($file, $all)

boolean $file � If true, code will be written to a file
boolean $all � If true, all code written with JavascriptHelper will be sent to a file

Allows you to control how the JavaScript Helper caches event code generated by event(). If $all
is set to true, all code generated by the helper is cached and can be retrieved with getCache() or
written to file or page output with writeCache().

getCache($clear)

boolean $clear � If set to true the cached javascript is cleared. Defaults to true.

Gets (and clears) the current JavaScript event cache

writeEvents($inline)

boolean $inline � If true, returns JavaScript event code. Otherwise it is added to the
output of $scripts_for_layout in the layout.

Returns cached javascript code. If $file was set to true with cacheEvents(), code is cached to a
file and a script link to the cached events file is returned. If inline is true, the event code is
returned inline. Else it is added to the $scripts_for_layout for the page.

includeScript($script)

string $script � File name of script to include.

Includes the named $script. If $script is left blank the helper will include every script in your
app/webroot/js directory. Includes the contents of each file inline. To create a script tag with
an src attribute use link().

1. <?php echo $number4>currency($number,$currency); ?>

1. <?php echo $number4>currency('1234.56', 'FOO'); ?>
2.
3. //Outputs:
4. FOO 1,234.56

object($data, $options)

array $data � Data to be converted
array $options � Set of options: block, prefix, postfix, stringKeys, quoteKeys, q

boolean $options['block'] � Wraps return value in a <script /> block if true.
Defaults to false.
string $options['prefix'] � Prepends the string to the returned data.
string $options['postfix'] � Appends the string to the returned data.
array $options['stringKeys'] � A list of array keys to be treated as a string.
boolean $options['quoteKeys'] � If false, treats $stringKey as a list of keys *not*
to be quoted. Defaults to true.
string $options['q'] � The type of quote to use.

Generates a JavaScript object in JavaScript Object Notation (JSON) from $data array.

7.6 Number

The NumberHelper contains convenience methods that enable display numbers in common
formats in your views. These methods include ways to format currency, percentages, data sizes,
format numbers to specific precisions and also to give youmore flexibility with formating
numbers.

All of these functions return the formated number; They do not automatically echo the output
into the view.

7.6.1 currency

currency(mixed $number, string $currency= 'USD')

This method is used to display a number in common currency formats (EUR,GBP,USD). Usage
in a view looks like:

The first parameter, $number, should be a floating point number that represents the amount of
money you are expressing. The second parameter is used to choose a predefined currency
formatting scheme:

$currency 1234.56, formatted by currency type

EUR € 1.236,33

GBP £ 1,236.33

USD $ 1,236.33

HTML entities are outputted as currency symbols where needed.

If a non�recognized $currency value is supplied, it is prepended to a USD formatted number.
For example:

7.6.2 precision

1. <?php echo $number4>precision(456.91873645, 2); ?>
2.
3. //Outputs:
4. 456.92

1. <?php echo $number4>toPercentage(45.691873645); ?>
2.
3. //Outputs:
4. 45.69%

1. echo $number4>toReadableSize(0); // 0 Bytes
2. echo $number4>toReadableSize(1024); // 1 KB
3. echo $number4>toReadableSize(1321205.76); // 1.26 MB
4. echo $number4>toReadableSize(5368709120); // 5.00 GB

1. $number4>format($number, $options);

precision (mixed $number, int $precision = 3)

This method displays a number with the specified amount of precision (decimal places). It will
round in order to maintain the level of precision defined.

7.6.3 toPercentage

toPercentage(mixed $number, int $precision = 2)

Like precision(), this method formats a number according to the supplied precision (where
numbers are rounded to meet the given precision). This method also expresses the number as a
percentage and prepends the output with a percent sign.

7.6.4 toReadableSize

toReadableSize(string $data_size)

This method formats data sizes in human readable forms. It provides a shortcut way to convert
bytes to KB, MB, GB, and TB. The size is displayed with a two�digit precision level, according
to the size of data supplied (i.e. higher sizes are expressed in larger terms):

7.6.5 format

format (mixed $number, mixed $options=false)

This method gives youmuch more control over the formatting of numbers for use in your views
(and is used as the main method by most of the other NumberHelper methods). Using this
methodmight looks like:

The $number parameter is the number that you are planning on formatting for output. With no
$options supplied, the number 1236.334 would output as 1,236. Note that the default precision
is zero decimal places.

The $options parameter is where the real magic for this method resides.

If you pass an integer then this becomes the amount of precision or places for the
function.
If you pass an associated array, you can use the following keys:

places (integer): the amount of desired precision

1. echo $number4>format('123456.7890', array(
2. 'places' => 2,
3. 'before' => '¥ ',
4. 'escape' => false,
5. 'decimals' => '.',
6. 'thousands' => ','
7.));
8. // output '¥ 123,456.79'

1. echo $paginator4>counter(array(
2. 'format' => 'Page %page% of %pages%,
3. showing %current% records out of %count% total,
4. starting on record %start%, ending on %end%'
5.));

before (string): to be put before the outputted number
escape (boolean): if you want the value in before to be escaped
decimals (string): used to delimit the decimal places in a number
thousands (string): used to mark off thousand, millions, … places

7.7 Paginator

The Pagination helper is used to output pagination controls such as page numbers and next/
previous links.

See also Common Tasks With CakePHP + Pagination (http://book.cakephp.org/
view/164/pagination) for additional information.

7.7.1 Methods

options($options = array())

mixed options() Default options for pagination links. If a string is supplied � it is used
as the DOM id element to update. See #options for list of keys.

options() sets all the options for the Paginator Helper. Supported options are:

format

Format of the counter. Supported formats are 'range' and 'pages' and custom which is the
default. In the default mode the supplied string is parsed and tokens are replaced with actual
values. The available tokens are:

%page% � the current page displayed.
%pages% � total number of pages.
%current% � current number of records being shown.
%count% � the total number of records in the result set.
%start% � number of the first record being displayed.
%end% � number of the last record being displayed.

Now that you know the available tokens you can use the counter() method to display all sorts of
information about the returned results, for example:

separator

The separator between the actual page and the number of pages. Defaults to ' of '. This is used
in conjunction with format = 'pages'

1. echo $paginator4>link('Sort by title on page 5',
2. array('sort' => 'title', 'page' => 5, 'direction' => 'desc'));

1. Router::parseExtensions('rss');

url

The url of the paginating action. url has a few sub options as well

sort � the key that the records are sorted by
direction � The direction of the sorting. Defaults to 'ASC'
page � The page number to display

model

The name of the model being paginated.

escape

Defines if the title field for links should be HTML escaped. Defaults to true.

update

The DOM id of the element to update with the results of AJAX pagination calls. If not specified,
regular links will be created.

indicator

DOM id of the element that will be shown as a loading or working indicator while doing AJAX
requests.

link($title, $url = array(), $options = array())

string $title � Title for the link.
mixed $url Url for the action. See Router::url()
array $options Options for the link. See options() for list of keys.

Creates a regular or AJAX link with pagination parameters

If created in the view for /posts/indexWould create a link pointing at '/posts/index/
page:5/sort:title/direction:desc'

7.8 RSS

The RSS helper makes generating XML for RSS feeds easy.

7.8.1 Creating an RSS feed with the RssHelper

This example assumes you have a Posts Controller and Post Model already created and want to
make an alternative view for RSS.

Creating an xml/rss version of posts/index is a snap with CakePHP 1.2. After a few simple
steps you can simply append the desired extension .rss to posts/index making your URL posts/
index.rss. Before we jump too far ahead trying to get our webservice up and running we need to
do a few things. First parseExtensions needs to be activated, this is done in app/config/
routes.php

In the call above we’ve activated the .rss extension. When using Router::parseExtensions() you
can pass as many arguments or extensions as you want. This will activate each extension/

1. var $components = array('RequestHandler');

1. // Modify the Posts Controller action that corresponds to
2. // the action which deliver the rss feed, which is the
3. // index action in our example
4. public function index(){
5. if($this4>RequestHandler4>isRss()){
6. $posts = $this4>Post4>find('all', array('limit' => 20, 'order'
=> 'Post.created DESC'));
7. $this4>set(compact('posts'));
8. } else {
9. // this is not an Rss request, so deliver
10. // data used by website's interface
11. $this4>paginate['Post'] = array('order' => 'Post.created DESC',
'limit' => 10);
12.
13. $posts = $this4>paginate();
14. $this4>set(compact('posts'));
15. }
16. }

content�type for use in your application. Now when the address posts/index.rss is requested
you will get an xml version of your posts/index. However, first we need to edit the controller to
add in the rss�specific code.

7.8.1.1 Controller Code

It is a good idea to add RequestHandler to your PostsController's $components array. This will
allow a lot of automagic to occur.

Before we can make an RSS version of our posts/index we need to get a few things in order. It
may be tempting to put the channel metadata in the controller action and pass it to your view
using the Controller::set() method but this is inappropriate. That information can also go in
the view. That will come later though, for now if you have a different set of logic for the data
used to make the RSS feed and the data for the html view you can use the
RequestHandler::isRss() method, otherwise your controller can stay the same.

With all the View variables set we need to create an rss layout.

7.8.1.1.1 Layout

An Rss layout is very simple, put the following contents in app/views/layouts/rss/
default.ctp:

1. echo $rss4>header();
2. if (!isset($documentData)) {
3. $documentData = array();
4. }
5. if (!isset($channelData)) {
6. $channelData = array();
7. }
8. if (!isset($channelData['title'])) {
9. $channelData['title'] = $title_for_layout;
10. }
11. $channel = $rss4>channel(array(), $channelData, $content_for_layout);
12. echo $rss4>document($documentData,$channel);

1. $this4>set('documentData', array(
2. 'xmlns:dc' => 'http://purl.org/dc/elements/1.1/'));
3. $this4>set('channelData', array(
4. 'title' => __("Most Recent Posts", true),
5. 'link' => $html4>url('/', true),
6. 'description' => __("Most recent posts.", true),
7. 'language' => 'en4us'));

It doesn't look like much but thanks to the power in the RssHelper its doing a lot of lifting for
us. We haven't set $documentData or $channelData in the controller, however in CakePHP 1.2
your views can pass variables back to the layout. Which is where our $channelData array will
come from setting all of the meta data for our feed.

Next up is view file for my posts/index. Much like the layout file we created, we need to create a
views/posts/rss/ directory and create a new index.ctp inside that folder. The contents of the file
are below.

7.8.1.1.2 View

Our view begins by setting the $documentData and $channelData variables for the layout,
these contain all the metadata for our RSS feed. This is done by using the View::set() method
which is analogous to the Controller::set() method. Here though we are passing the channel's
metadata back to the layout.

The second part of the view generates the elements for the actual records of the feed. This is
accomplished by looping through the data that has been passed to the view ($items) and using
the RssHelper::item() method. The other method you can use, RssHelper::items() which takes
a callback and an array of items for the feed. (The method I have seen used for the callback has
always been called transformRss(). There is one downfall to this method, which is that you
cannot use any of the other helper classes to prepare your data inside the callback method
because the scope inside the method does not include anything that is not passed inside, thus
not giving access to the TimeHelper or any other helper that youmay need. The
RssHelper::item() transforms the associative array into an element for each key value pair.

1. foreach ($posts as $post) {
2. $postTime = strtotime($post['Post']['created']);
3.
4. $postLink = array(
5. 'controller' => 'entries',
6. 'action' => 'view',
7. 'year' => date('Y', $postTime),
8. 'month' => date('m', $postTime),
9. 'day' => date('d', $postTime),
10. $post['Post']['slug']);
11. // You should import Sanitize
12. App::import('Sanitize');
13. // This is the part where we clean the body text for output as
the description
14. // of the rss item, this needs to have only text to make sure
the feed validates
15. $bodyText = preg_replace('=\(.*?\)=is', '', $post['Post']
['body']);
16. $bodyText = $text4>stripLinks($bodyText);
17. $bodyText = Sanitize::stripAll($bodyText);
18. $bodyText = $text4>truncate($bodyText, 400, '...', true, true);
19.
20. echo $rss4>item(array(), array(
21. 'title' => $post['Post']['title'],
22. 'link' => $postLink,
23. 'guid' => array('url' => $postLink, 'isPermaLink' => 'true')
,
24. 'description' => $bodyText,
25. 'dc:creator' => $post['Post']['author'],
26. 'pubDate' => $post['Post']['created']));
27. }

You can see above that we can use the loop to prepare the data to be transformed into XML
elements. It is important to filter out any non�plain text charictars out of the description,
especially if you are using a rich text editor for the body of your blog. In the code above we use
the TextHelper::stripLinks() method and a few methods from the Sanitize class, but we
recommend writing a comprehensive text cleaning helper to really scrub the text clean. Once
we have set up the data for the feed, we can then use the RssHelper::item() method to create the
XML in RSS format. Once you have all this setup, you can test your RSS feed by going to your
site /posts/index.rss and you will see your new feed. It is always important that you validate
your RSS feed before making it live. This can be done by visiting sites that validate the XML
such as Feed Validator or the w3c site at http://validator.w3.org/feed/.

Youmay need to set the value of 'debug' in your core configuration to 1 or to 0 to get a valid feed,
because of the various debug information added automagically under higher debug settings
that break XML syntax or feed validation rules.

7.9 Session

As a natural counterpart to the Session Component, the Session Helper replicates most of the
components functionality andmakes it available in your view. The Session Helper is
automatically added to your view — it is not necessary to add it to the $helpers array in the
controller.

The major difference between the Session Helper and the Session Component is that the helper
does not have the ability to write to the session.

1. array('User' =>
2. array('username' => 'super@example.com')
3.);

1. // Controller code
2. $this4>Session4>setFlash('My Message');
3. // In view
4. $session4>flash();
5. // outputs "<div id='flashMessage' class='message'>My Message</div>"
6. // output the AuthComponent Session message, if set.
7. $session4>flash('auth');

1. $my_text = 'For more information regarding our world4famous pastries and
desserts, contact info@example.com';
2. $linked_text = $text4>autoLinkEmails($my_text);
3. //$linked_text:
4. For more information regarding our world4famous pastries and desserts,
5. contact <u>info@example.com</u>

As with the Session Component, data is written to and read by using dot separated array
structures.

Given the previous array structure, the node would be accessed by User.username, with the dot
indicating the nested array. This notation is used for all Session helper methods wherever a $
key is used.

7.9.1 Methods

read($
key)

Read from the Session. Returns a string or array depending on the contents of the
session.

id() Returns the current session ID.

check($
key)

Check to see if a key is in the Session. Returns a boolean on the key's existence.

flash($
key)

This will echo the contents of the $_SESSION.Message. It is used in conjunction
with the Session Component's setFlash() method.

error() Returns the last error in the session if one exists.

7.9.2 flash

The flash method uses the default key set by setFlash(). You can also retrieve specific keys
in the session. For example, the Auth component sets all of its Session messages under the
'auth' key

7.10 Text

The TextHelper contains methods to make text more usable and friendly in your views. It aids
in enabling links, formatting urls, creating excepts of text around chosen words or phrases,
highlighting key words in blocks of text, and to gracefully truncating long stretches of text.

autoLinkEmails (string $text, array $htmlOptions=array())

Adds links to the well�formed email addresses in $text, according to any options defined in $
htmlOptions (see HtmlHelper::link()).

1. <?php echo $text4>excerpt($last_paragraph, 'method', 50); ?>
2. //Output
3. mined by $radius, and suffixed with $ending. This method is especially
handy for
4. search results. The query...

1. <?php echo $text4>highlight($last_sentence, 'using'); ?>
2. //Output
3. Highlights $needle in $haystack using
4. the $highlighter string specified.

1. <?php echo $text4>toList($colors); ?>
2. //Output
red, orange, yellow, green, blue, indigo and violet

1. <?php
2. echo $text4>truncate(
3. 'The killer crept forward and tripped on the rug.',
4. 22,
5. '...',
6. false
7.);
8. ?>

autoLinkUrls (string $text, array $htmlOptions=array())

Same as in autoLinkEmails(), only this method searches for strings that start with https, http,
ftp, or nntp and links them appropriately.

autoLink (string $text, array $htmlOptions=array())

Performs the functionality in both autoLinkUrls() and autoLinkEmails() on the supplied $text.
All URLs and emails are linked appropriately given the supplied $htmlOptions.

excerpt (string $haystack, string $needle, int $radius=100, string $ending="...")

Extracts an excerpt from $haystack surrounding the $needle with a number of characters on
each side determined by $radius, and suffixed with $ending. This method is especially handy
for search results. The query string or keywords can be shown within the resulting document.

highlight (string $haystack, string $needle, $highlighter= '< span
class="highlight">\1')

Highlights $needle in $haystack using the $highlighter string specified.

stripLinks ($text)

Strips the supplied $text of any HTML links.

toList (array $list, $and= 'and')

Creates a comma�separated list where the last two items are joined with ‘and’.

truncate (string $text, int $length=100, string $ending= '...', boolean $exact=true,
boolean $considerHtml=false)

trim(); // an alias for truncate

Cuts a string to the $length and suffix with $ending if the text is longer than $length. If $exact
is passed as false, the truncation will occur after the next word ending. If $considerHtml is
passed as true, html tags will be respected and will not be cut off.

1. //Output:
2. The killer crept...

7.11 Time

The Time Helper does what it says on the tin: saves you time. It allows for the quick processing
of time related information. The Time Helper has two main tasks that it can perform:

1. It can format time strings.
2. It can test time (but cannot bend time, sorry).

7.11.1 Formatting

fromString($date_string)

fromString takes a string and uses strtotime to convert it into a date object. If the string
passed in is a number then it'll convert it into an integer, being the number of seconds since the
Unix Epoch (January 1 1970 00:00:00 GMT). Passing in a string of "20081231" will create
undesired results as it will covert it to the number of seconds from the Epoch, in this case "Fri,
Aug 21st 1970, 06:07"

toQuarter($date_string, $range = false)

toQuarter will return 1, 2, 3 or 4 depending on what quarter of the year the date falls in. If
range is set to true, a two element array will be returned with start and end dates in the format
"2008�03�31".

toUnix($date_string)

toUnix is a wrapper for fromString.

toAtom($date_string)

toAtom return a date string in the Atom format "2008�01�12T00:00:00Z"

toRSS($date_string)

toRSS returns a date string in the RSS format "Sat, 12 Jan 2008 00:00:00 �0500"

nice($date_string = null)

nice takes a date string and outputs it in the format "Tue, Jan 1st 2008, 19:25".

niceShort($date_string = null)

niceShort takes a date string and outputs it in the format "Jan 1st 2008, 19:25". If the date
object is today, the format will be "Today, 19:25". If the date object is yesterday, the format will
be "Yesterday, 19:25".

daysAsSql($begin, $end, $field_name)

daysAsSql returns a string in the format "($field_name >= '2008�01�21 00:00:00') AND ($
field_name <= '2008�01�25 23:59:59')". This is handy if you need to search for records
between two dates inclusively.

dayAsSql($date_string, $field_name)

dayAsSql creates a string in the same format as daysAsSql but only needs a single date object.

timeAgoInWords($date_string, $options = array(), $backwards =
null)

timeAgoInWords will take a date string and convert it into a friendly word format like, "3
weeks, 3 days ago". Passing in true for $backwards will specifically declare the time is set in
the future, which uses the format "on 31/12/08".

Option Description

format a date format; default "on 31/12/08"

end determines the cutoff point in which it no longer uses words and uses the date format
instead; default "+1 month"

relativeTime($date_string, $format = 'j/n/y')

relativeTime is essentially an alias for timeAgoInWords.

gmt($date_string = null)

gmt will return the date as an integer set to Greenwich Mean Time (GMT).

format($format = 'd4m4Y', $date_string)

format is a wrapper for the PHP date function.

Function Format

nice Tue, Jan 1st 2008, 19:25

niceShort
Jan 1st 2008, 19:25
Today, 19:25
Yesterday, 19:25

daysAsSql ($field_name >= '2008�01�21 00:00:00') AND ($field_name <=
'2008�01�25 23:59:59')

dayAsSql ($field_name >= '2008�01�21 00:00:00') AND ($field_name <=
'2008�01�21 23:59:59')

timeAgoInWords
relativeTime

on 21/01/08
3 months, 3 weeks, 2 days ago
7 minutes ago
2 seconds ago

gmt 1200787200

7.11.2 Testing Time

isToday
isThisWeek
isThisMonth
isThisYear
wasYesterday
isTomorrow
wasWithinLast

All of the above functions return true or false when passed a date string. wasWithinLast
takes an additional $time_interval option:

1. <?php
2. echo $xml4>serialize($data);
3. format will be similar to:
4. <model_name id="1" field_name="content" />
5. ?>

1. pr($data);

$time4>wasWithinLast($time_interval, $date_string)

wasWithinLast takes a time interval which is a string in the format "3 months" and accepts
a time interval of seconds, minutes, hours, days, weeks, months and years (plural and not). If a
time interval is not recognized (for example, if it is mistyped) then it will default to days.

7.12 XML

The XML Helper simplifies the output of XML documents.

7.12.1 serialize

serialize($data, $options = array())

mixed $data � The content to be converted to XML
mixed $options � The data formatting options. For a list of valid options, see Xml::__
construct()

string $options['root'] � The name of the root element, defaults to '#document'
string $options['version'] � The XML version, defaults to '1.0'
string $options['encoding'] � Document encoding, defaults to 'UTF�8'
array $options['namespaces'] � An array of namespaces (as strings) used in this
document
string $options['format'] � Specifies the format this document converts to when
parsed or rendered out as text, either 'attributes' or 'tags', defaults to 'attributes'
array $options['tags'] � An array specifying any tag�specific formatting options,
indexed by tag name. See XmlNode::normalize()

The serialize method takes an array and creates an XML string of the data. This is commonly
used for serializing model data.

The serialize method acts as a shortcut to instantiating the XML built�in class and using the
toString method of that. If you needmore control over serialization, youmay wish to invoke the
XML class directly.

You can modify how a data is serialized by using the format attribute. By default the data will
be serialized as attributes. If you set the format as "tags" the data will be serialized as tags.

Array
(
 [Baker] => Array
 (
 [0] => Array
 (
 [name] => The Baker
 [weight] => heavy
)
 [1] => Array
 (

1. pr($xml4>serialize($data));

1. pr($xml4>serialize($data, array('format' => 'tags')));

1. echo $xml4>elem('count', array('namespace' => 'myNameSpace'), 'content');
2. // generates: <myNameSpace:count>content</count>

1. echo $xml4>elem('count', null, array('cdata'=>true,'value'=>'content'));
2. // generates: <count><![CDATA[content]]></count>

1. <?php
2. echo $xml4>header();
3. // generates: <?xml version="1.0" encoding="UTF48" ?>
4. ?>

 [name] => The Cook
 [weight] => light4weight
)
)
)

<baker>
 <baker name="The Baker" weight="heavy" />
 <baker name="The Cook" weight="light4weight" />
</baker>

<baker>
 <baker>
 <name><![CDATA[The Baker]]></name>
 <weight><![CDATA[heavy]]></weight>
 </baker>
 <baker>
 <name><![CDATA[The Cook]]></name>
 <weight><![CDATA[light4weight]]></weight>
 </baker>
</baker>

7.12.2 elem

The elemmethod allows you to build an XML node string with attributes and internal content,
as well.

string elem (string $name, $attrib = array(), mixed $content = null, $endTag = true)

If you want to wrap your text node with CDATA, the third argument should be an array
containing two keys: 'cdata' and 'value'

7.12.3 header

The header()method is used to output the XML declaration.

You can pass in a different version number and encoding type as parameters of the header
method.

1. <?php
2. echo $xml4>header(array('version'=>'1.1'));
3. // generates: <?xml version="1.1" encoding="UTF48" ?>
4. ?>

1. String::uuid(); // 485fc3814e790447a34979441337c0a8fe68

8 Core Utility Libraries

CakePHP includes general�purpose utility libraries which can be called from anywhere in your
application, such as Set and HttpSocket.

8.1 Inflector

The Inflector class takes a string and can manipulate it to handle word variations such as
pluralizations or camelizing and is normally accessed statically. Example:
Inflector::pluralize('example') returns "examples".

8.1.1 Class methods

Input Output

pluralize Apple, Orange, Person, Man Apples, Oranges, People, Men

singularize Apples, Oranges, People, Men Apple, Orange, Person, Man

camelize Apple_pie, some_thing, people_person ApplePie, SomeThing, PeoplePerson

underscore

It should be noted that underscore will only convert camelCase formatted
words. Words that contains spaces will be lower�cased, but will not contain an
underscore.

applePie, someThing apple_pie, some_thing

humanize apple_pie, some_thing, people_person Apple Pie, Some Thing, People Person

tableize Apple, UserProfileSetting, Person apples, user_profile_settings, people

classify apples, user_profile_settings, people Apple, UserProfileSetting, Person

variable apples, user_result, people_people apples, userResult, peoplePeople

slug

Slug converts special characters into latin versions and converting unmatched
characters and spaces to underscores. The slug method expects UTF�8
encoding.

apple purée apple_puree

8.2 String

The String class includes convenience methods for creating andmanipulating strings and is
normally accessed statically. Example: String::uuid().

8.2.1 uuid

The uuid method is used to generate unique identifiers as perRFC 4122 (http://
www.ietf.org/rfc/rfc4122.txt) . The uuid is a 128bit string in the format of 485fc381�
e790�47a3�9794�1337c0a8fe68.

8.2.2 tokenize

1. String::insert('My name is :name and I am :age years old.', array('name'
=> 'Bob', 'age' => '65'));
2. // generates: "My name is Bob and I am 65 years old."

1. $options = array(
2. 'clean' => array(
3. 'method' => 'text', // or html
4.),
5. 'before' => '',
6. 'after' => ''
7.);

string tokenize ($data, $separator = ',', $leftBound = '(', $
rightBound = ')')

Tokenizes a string using $separator, ignoring any instance of $separator that appears
between $leftBound and $rightBound.

8.2.3 insert

string insert ($string, $data, $options = array())

The insert method is used to create string templates and to allow for key/value replacements.

8.2.4 cleanInsert

string cleanInsert ($string, $options = array())

Cleans up a Set::insert formatted string with given $options depending on the 'clean' key in $
options. The default method used is text but html is also available. The goal of this function is
to replace all whitespace and unneededmarkup around placeholders that did not get replaced
by Set::insert.

You can use the following options in the options array:

8.3 Xml

The Xml class provides an easy way to parse and generate XML fragments and documents. It is
an all PHP solution and requires only the Xml/Expat extension to be installed.

8.3.1 Xml parsing

Parsing Xml with the Xml class requires you to have a string containing the xml you wish to
parse.

1. $input = '<' . '?xml version="1.0" encoding="UTF48" ?' . '>
2. <container>
3. <element id="first4el">
4. <name>My element</name>
5. <size>20</size>
6. </element>
7. <element>
8. <name>Your element</name>
9. <size>30</size>
10. </element>
11. </container>';
12. $xml = new Xml($input);

1. echo $xml4>children[0]4>children[0]4>name;
2. // outputs 'element'
3. echo $xml4>children[0]4>children[0]4>children[0]4>children[0]4>value;
4. // outputs 'My Element'
5. echo $xml4>children[0]4>child('element')4>attributes['id'];
6. //outputs 'first4el'

This would create an Xml document object that can then be manipulated and traversed, and
reconverted back into a string.

With the sample above you could do the following.

8.4 Set

Array management, if done right, can be a very powerful and useful tool for building smarter,
more optimized code. CakePHP offers a very useful set of static utilities in the Set class that
allow you to do just that.

CakePHP's Set class can be called from anymodel or controller in the same way Inflector is
called. Example: Set::combine().

8.4.1 insert

array Set::insert ($list, $path, $data = null)

Inserts $data into an array as defined by $path.

1. $a = array(
2. 'pages' => array('name' => 'page')
3.);
4. $result = Set::insert($a, 'files', array('name' => 'files'));
5. /* $result now looks like:
6. Array
7. (
8. [pages] => Array
9. (
10. [name] => page
11.)
12. [files] => Array
13. (
14. [name] => files
15.)
16.)
17. */
18. $a = array(
19. 'pages' => array('name' => 'page')
20.);
21. $result = Set::insert($a, 'pages.name', array());
22. /* $result now looks like:
23. Array
24. (
25. [pages] => Array
26. (
27. [name] => Array
28. (
29.)
30.)
31.)
32. */
33. $a = array(
34. 'pages' => array(
35. 0 => array('name' => 'main'),
36. 1 => array('name' => 'about')
37.)
38.);
39. $result = Set::insert($a, 'pages.1.vars', array('title' => 'page title')
);
40. /* $result now looks like:
41. Array
42. (
43. [pages] => Array
44. (
45. [0] => Array
46. (
47. [name] => main
48.)
49. [1] => Array
50. (
51. [name] => about
52. [vars] => Array
53. (
54. [title] => page title
55.)
56.)
57.)
58.)

59. */

8.4.2 sort

array Set::sort ($data, $path, $dir)

Sorts an array by any value, determined by a Set�compatible path.

1. $a = array(
2. 0 => array('Person' => array('name' => 'Jeff')),
3. 1 => array('Shirt' => array('color' => 'black'))
4.);
5. $result = Set::sort($a, '{n}.Person.name', 'asc');
6. /* $result now looks like:
7. Array
8. (
9. [0] => Array
10. (
11. [Shirt] => Array
12. (
13. [color] => black
14.)
15.)
16. [1] => Array
17. (
18. [Person] => Array
19. (
20. [name] => Jeff
21.)
22.)
23.)
24. */
25. $result = Set::sort($a, '{n}.Shirt', 'asc');
26. /* $result now looks like:
27. Array
28. (
29. [0] => Array
30. (
31. [Person] => Array
32. (
33. [name] => Jeff
34.)
35.)
36. [1] => Array
37. (
38. [Shirt] => Array
39. (
40. [color] => black
41.)
42.)
43.)
44. */
45. $result = Set::sort($a, '{n}', 'desc');
46. /* $result now looks like:
47. Array
48. (
49. [0] => Array
50. (
51. [Shirt] => Array
52. (
53. [color] => black
54.)
55.)
56. [1] => Array
57. (
58. [Person] => Array
59. (

60. [name] => Jeff
61.)
62.)
63.)
64. */
65. $a = array(
66. array(7,6,4),
67. array(3,4,5),
68. array(3,2,1),
69.);
70. $result = Set::sort($a, '{n}.{n}', 'asc');
71. /* $result now looks like:
72. Array
73. (
74. [0] => Array
75. (
76. [0] => 3
77. [1] => 2
78. [2] => 1
79.)
80. [1] => Array
81. (
82. [0] => 3
83. [1] => 4
84. [2] => 5
85.)
86. [2] => Array
87. (
88. [0] => 7
89. [1] => 6
90. [2] => 4
91.)
92.)
93. */

8.4.3 reverse

array Set::reverse ($object)

Set::reverse is basically the opposite of Set::map. It converts an object into an array. If $object
is not an object, reverse will simply return $object.

1. $result = Set::reverse(null);
2. // Null
3. $result = Set::reverse(false);
4. // false
5. $a = array(
6. 'Post' => array('id'=> 1, 'title' => 'First Post'),
7. 'Comment' => array(
8. array('id'=> 1, 'title' => 'First Comment'),
9. array('id'=> 2, 'title' => 'Second Comment')
10.),
11. 'Tag' => array(
12. array('id'=> 1, 'title' => 'First Tag'),
13. array('id'=> 2, 'title' => 'Second Tag')
14.),
15.);
16. $map = Set::map($a); // Turn $a into a class object
17. /* $map now looks like:
18. stdClass Object
19. (
20. [_name_] => Post
21. [id] => 1
22. [title] => First Post
23. [Comment] => Array
24. (
25. [0] => stdClass Object
26. (
27. [id] => 1
28. [title] => First Comment
29.)
30. [1] => stdClass Object
31. (
32. [id] => 2
33. [title] => Second Comment
34.)
35.)
36. [Tag] => Array
37. (
38. [0] => stdClass Object
39. (
40. [id] => 1
41. [title] => First Tag
42.)
43. [1] => stdClass Object
44. (
45. [id] => 2
46. [title] => Second Tag
47.)
48.)
49.)
50. */
51. $result = Set::reverse($map);
52. /* $result now looks like:
53. Array
54. (
55. [Post] => Array
56. (
57. [id] => 1
58. [title] => First Post
59. [Comment] => Array

60. (
61. [0] => Array
62. (
63. [id] => 1
64. [title] => First Comment
65.)
66. [1] => Array
67. (
68. [id] => 2
69. [title] => Second Comment
70.)
71.)
72. [Tag] => Array
73. (
74. [0] => Array
75. (
76. [id] => 1
77. [title] => First Tag
78.)
79. [1] => Array
80. (
81. [id] => 2
82. [title] => Second Tag
83.)
84.)
85.)
86.)
87. */
88. $result = Set::reverse($a['Post']); // Just return the array
89. /* $result now looks like:
90. Array
91. (
92. [id] => 1
93. [title] => First Post
94.)
95. */
96.

8.4.4 combine

array Set::combine ($data, $path1 = null, $path2 = null, $groupPath
= null)

Creates an associative array using a $path1 as the path to build its keys, and optionally $path2
as path to get the values. If $path2 is not specified, all values will be initialized to null (useful
for Set::merge). You can optionally group the values by what is obtained when following the
path specified in $groupPath.

1. $result = Set::combine(array(), '{n}.User.id', '{n}.User.Data');
2. // $result == array();
3. $result = Set::combine('', '{n}.User.id', '{n}.User.Data');
4. // $result == array();
5. $a = array(
6. array(
7. 'User' => array(
8. 'id' => 2,
9. 'group_id' => 1,
10. 'Data' => array(
11. 'user' => 'mariano.iglesias',
12. 'name' => 'Mariano Iglesias'
13.)
14.)
15.),
16. array(
17. 'User' => array(
18. 'id' => 14,
19. 'group_id' => 2,
20. 'Data' => array(
21. 'user' => 'phpnut',
22. 'name' => 'Larry E. Masters'
23.)
24.)
25.),
26. array(
27. 'User' => array(
28. 'id' => 25,
29. 'group_id' => 1,
30. 'Data' => array(
31. 'user' => 'gwoo',
32. 'name' => 'The Gwoo'
33.)
34.)
35.)
36.);
37. $result = Set::combine($a, '{n}.User.id');
38. /* $result now looks like:
39. Array
40. (
41. [2] =>
42. [14] =>
43. [25] =>
44.)
45. */
46. $result = Set::combine($a, '{n}.User.id', '{n}.User.non4existant');
47. /* $result now looks like:
48. Array
49. (
50. [2] =>
51. [14] =>
52. [25] =>
53.)
54. */
55. $result = Set::combine($a, '{n}.User.id', '{n}.User.Data');
56. /* $result now looks like:
57. Array
58. (
59. [2] => Array

60. (
61. [user] => mariano.iglesias
62. [name] => Mariano Iglesias
63.)
64. [14] => Array
65. (
66. [user] => phpnut
67. [name] => Larry E. Masters
68.)
69. [25] => Array
70. (
71. [user] => gwoo
72. [name] => The Gwoo
73.)
74.)
75. */
76. $result = Set::combine($a, '{n}.User.id', '{n}.User.Data.name');
77. /* $result now looks like:
78. Array
79. (
80. [2] => Mariano Iglesias
81. [14] => Larry E. Masters
82. [25] => The Gwoo
83.)
84. */
85. $result = Set::combine($a, '{n}.User.id', '{n}.User.Data', '{n}
.User.group_id');
86. /* $result now looks like:
87. Array
88. (
89. [1] => Array
90. (
91. [2] => Array
92. (
93. [user] => mariano.iglesias
94. [name] => Mariano Iglesias
95.)
96. [25] => Array
97. (
98. [user] => gwoo
99. [name] => The Gwoo
100.)
101.)
102. [2] => Array
103. (
104. [14] => Array
105. (
106. [user] => phpnut
107. [name] => Larry E. Masters
108.)
109.)
110.)
111. */
112. $result = Set::combine($a, '{n}.User.id', '{n}.User.Data.name', '{n}
.User.group_id');
113. /* $result now looks like:
114. Array
115. (
116. [1] => Array
117. (

125.)
126. */
127. $result = Set::combine($a, '{n}.User.id', array('{0}: {1}', '{n}
.User.Data.user', '{n}.User.Data.name'), '{n}.User.group_id');
128. /* $result now looks like:
129. Array
130. (
131. [1] => Array
132. (
133. [2] => mariano.iglesias: Mariano Iglesias
134. [25] => gwoo: The Gwoo
135.)
136. [2] => Array
137. (
138. [14] => phpnut: Larry E. Masters
139.)
140.)
141. */
142. $result = Set::combine($a, array('{0}: {1}', '{n}.User.Data.user', '{n}
.User.Data.name'), '{n}.User.id');
143. /* $result now looks like:
144. Array
145. (
146. [mariano.iglesias: Mariano Iglesias] => 2
147. [phpnut: Larry E. Masters] => 14
148. [gwoo: The Gwoo] => 25
149.)
150. */
151. $result = Set::combine($a, array('{1}: {0}', '{n}.User.Data.user', '{n}
.User.Data.name'), '{n}.User.id');
152. /* $result now looks like:
153. Array
154. (
155. [Mariano Iglesias: mariano.iglesias] => 2
156. [Larry E. Masters: phpnut] => 14
157. [The Gwoo: gwoo] => 25
158.)
159. */
160. $result = Set::combine($a, array('%1$s: %2$d', '{n}.User.Data.user',
'{n}.User.id'), '{n}.User.Data.name');
161. /* $result now looks like:
162. Array
163. (
164. [mariano.iglesias: 2] => Mariano Iglesias
165. [phpnut: 14] => Larry E. Masters
166. [gwoo: 25] => The Gwoo
167.)
168. */
169. $result = Set::combine($a, array('%2$d: %1$s', '{n}.User.Data.user',
'{n}.User.id'), '{n}.User.Data.name');
170. /* $result now looks like:
171. Array
172. (
173. [2: mariano.iglesias] => Mariano Iglesias
174. [14: phpnut] => Larry E. Masters
175. [25: gwoo] => The Gwoo
176.)
177. */

8.4.5 normalize

array Set::normalize ($list, $assoc = true, $sep = ',', $trim =
true)

Normalizes a string or array list.

1. $a = array('Tree', 'CounterCache',
2. 'Upload' => array(
3. 'folder' => 'products',
4. 'fields' => array('image_1_id', 'image_2_id', 'image_3_id',
'image_4_id', 'image_5_id')));
5. $b = array('Cacheable' => array('enabled' => false),
6. 'Limit',
7. 'Bindable',
8. 'Validator',
9. 'Transactional');
10. $result = Set::normalize($a);
11. /* $result now looks like:
12. Array
13. (
14. [Tree] =>
15. [CounterCache] =>
16. [Upload] => Array
17. (
18. [folder] => products
19. [fields] => Array
20. (
21. [0] => image_1_id
22. [1] => image_2_id
23. [2] => image_3_id
24. [3] => image_4_id
25. [4] => image_5_id
26.)
27.)
28.)
29. */
30. $result = Set::normalize($b);
31. /* $result now looks like:
32. Array
33. (
34. [Cacheable] => Array
35. (
36. [enabled] =>
37.)
38. [Limit] =>
39. [Bindable] =>
40. [Validator] =>
41. [Transactional] =>
42.)
43. */
44. $result = Set::merge($a, $b); // Now merge the two and normalize
45. /* $result now looks like:
46. Array
47. (
48. [0] => Tree
49. [1] => CounterCache
50. [Upload] => Array
51. (
52. [folder] => products
53. [fields] => Array
54. (
55. [0] => image_1_id
56. [1] => image_2_id
57. [2] => image_3_id
58. [3] => image_4_id

59. [4] => image_5_id
60.)
61.)
62. [Cacheable] => Array
63. (
64. [enabled] =>
65.)
66. [2] => Limit
67. [3] => Bindable
68. [4] => Validator
69. [5] => Transactional
70.)
71. */
72. $result = Set::normalize(Set::merge($a, $b));
73. /* $result now looks like:
74. Array
75. (
76. [Tree] =>
77. [CounterCache] =>
78. [Upload] => Array
79. (
80. [folder] => products
81. [fields] => Array
82. (
83. [0] => image_1_id
84. [1] => image_2_id
85. [2] => image_3_id
86. [3] => image_4_id
87. [4] => image_5_id
88.)
89.)
90. [Cacheable] => Array
91. (
92. [enabled] =>
93.)
94. [Limit] =>
95. [Bindable] =>
96. [Validator] =>
97. [Transactional] =>
98.)
99. */

8.4.6 countDim

integer Set::countDim ($array = null, $all = false, $count = 0)

Counts the dimensions of an array. If $all is set to false (which is the default) it will only
consider the dimension of the first element in the array.

1. $data = array('one', '2', 'three');
2. $result = Set::countDim($data);
3. // $result == 1
4. $data = array('1' => '1.1', '2', '3');
5. $result = Set::countDim($data);
6. // $result == 1
7. $data = array('1' => array('1.1' => '1.1.1'), '2', '3' => array('3.1' =>
'3.1.1'));
8. $result = Set::countDim($data);
9. // $result == 2
10. $data = array('1' => '1.1', '2', '3' => array('3.1' => '3.1.1'));
11. $result = Set::countDim($data);
12. // $result == 1
13. $data = array('1' => '1.1', '2', '3' => array('3.1' => '3.1.1'));
14. $result = Set::countDim($data, true);
15. // $result == 2
16. $data = array('1' => array('1.1' => '1.1.1'), '2', '3' => array('3.1'
=> array('3.1.1' => '3.1.1.1')));
17. $result = Set::countDim($data);
18. // $result == 2
19. $data = array('1' => array('1.1' => '1.1.1'), '2', '3' => array('3.1'
=> array('3.1.1' => '3.1.1.1')));
20. $result = Set::countDim($data, true);
21. // $result == 3
22. $data = array('1' => array('1.1' => '1.1.1'), array('2' => array('2.1'
=> array('2.1.1' => '2.1.1.1'))), '3' => array('3.1' => array('3.1.1' =>
'3.1.1.1')));
23. $result = Set::countDim($data, true);
24. // $result == 4
25. $data = array('1' => array('1.1' => '1.1.1'), array('2' => array('2.1'
=> array('2.1.1' => array('2.1.1.1')))), '3' => array('3.1' => array
('3.1.1' => '3.1.1.1')));
26. $result = Set::countDim($data, true);
27. // $result == 5
28. $data = array('1' => array('1.1' => '1.1.1'), array('2' => array('2.1'
=> array('2.1.1' => array('2.1.1.1' => '2.1.1.1.1')))), '3' => array('3.1'
=> array('3.1.1' => '3.1.1.1')));
29. $result = Set::countDim($data, true);
30. // $result == 5
31. $set = array('1' => array('1.1' => '1.1.1'), array('2' => array('2.1'
=> array('2.1.1' => array('2.1.1.1' => '2.1.1.1.1')))), '3' => array('3.1'
=> array('3.1.1' => '3.1.1.1')));
32. $result = Set::countDim($set, false, 0);
33. // $result == 2
34. $result = Set::countDim($set, true);
35. // $result == 5
36.

8.4.7 isEqual

boolean Set::isEqual ($val1, $val2 = null)

Determines if two Sets or arrays are equal.

1. $result = Set::isEqual(array(1), array(1,1));
2. // False
3. $result = Set::isEqual(array(1), array(1));
4. // True

8.4.8 diff

array Set::diff ($val1, $val2 = null)

Computes the difference between a Set and an array, two Sets, or two arrays

1. $a = array(
2. 0 => array('name' => 'main'),
3. 1 => array('name' => 'about')
4.);
5. $b = array(
6. 0 => array('name' => 'main'),
7. 1 => array('name' => 'about'),
8. 2 => array('name' => 'contact')
9.);
10. $result = Set::diff($a, $b);
11. /* $result now looks like:
12. Array
13. (
14. [2] => Array
15. (
16. [name] => contact
17.)
18.)
19. */
20. $result = Set::diff($a, array());
21. /* $result now looks like:
22. Array
23. (
24. [0] => Array
25. (
26. [name] => main
27.)
28. [1] => Array
29. (
30. [name] => about
31.)
32.)
33. */
34. $result = Set::diff(array(), $b);
35. /* $result now looks like:
36. Array
37. (
38. [0] => Array
39. (
40. [name] => main
41.)
42. [1] => Array
43. (
44. [name] => about
45.)
46. [2] => Array
47. (
48. [name] => contact
49.)
50.)
51. */
52. $b = array(
53. 0 => array('name' => 'me'),
54. 1 => array('name' => 'about')
55.);
56. $result = Set::diff($a, $b);
57. /* $result now looks like:
58. Array
59. (

60. [0] => Array
61. (
62. [name] => main
63.)
64.)
65. */

1. $set = array(
2. 'My Index 1' => array('First' => 'The first item')
3.);
4. $result = Set::check($set, 'My Index 1.First');
5. // $result == True
6. $result = Set::check($set, 'My Index 1');
7. // $result == True
8. $result = Set::check($set, array());
9. // $result == array('My Index 1' => array('First' => 'The first item'))
10. $set = array(
11. 'My Index 1' => array('First' =>
12. array('Second' =>
13. array('Third' =>
14. array('Fourth' => 'Heavy. Nesting.'))))
15.);
16. $result = Set::check($set, 'My Index 1.First.Second');
17. // $result == True
18. $result = Set::check($set, 'My Index 1.First.Second.Third');
19. // $result == True
20. $result = Set::check($set, 'My Index 1.First.Second.Third.Fourth');
21. // $result == True
22. $result = Set::check($set, 'My Index 1.First.Seconds.Third.Fourth');
23. // $result == False

8.4.9 check

boolean Set::check ($data, $path = null)

Checks if a particular path is set in an array

8.4.10 remove

boolean Set::remove ($list, $path = null)

Removes an element from a Set or array as defined by $path.

1. $a = array(
2. 'pages' => array('name' => 'page'),
3. 'files' => array('name' => 'files')
4.);
5. $result = Set::remove($a, 'files', array('name' => 'files'));
6. /* $result now looks like:
7. Array
8. (
9. [pages] => Array
10. (
11. [name] => page
12.)
13.)
14. */

1. $a = array(
2. array('Article' => array('id' => 1, 'title' => 'Article 1')),
3. array('Article' => array('id' => 2, 'title' => 'Article 2')),
4. array('Article' => array('id' => 3, 'title' => 'Article 3')));
5. $result = Set::extract($a, '{n}.Article.id');
6. /* $result now looks like:
7. Array
8. (
9. [0] => 1
10. [1] => 2
11. [2] => 3
12.)
13. */
14. $result = Set::extract($a, '{n}.Article.title');
15. /* $result now looks like:
16. Array
17. (
18. [0] => Article 1
19. [1] => Article 2
20. [2] => Article 3
21.)
22. */
23. $result = Set::extract($a, '1.Article.title');
24. // $result == "Article 2"
25. $result = Set::extract($a, '3.Article.title');
26. // $result == null

8.4.11 classicExtract

array Set::classicExtract ($data, $path = null)

Gets a value from an array or object that is contained in a given path using an array path
syntax, i.e.:

"{n}.Person.{[a�z]+}" � Where "{n}" represents a numeric key, "Person" represents a
string literal
"{[a�z]+}" (i.e. any string literal enclosed in brackets besides {n} and {s}) is interpreted
as a regular expression.

Example 1

Example 2

1. $a = array(
2. 0 => array('pages' => array('name' => 'page')),
3. 1 => array('fruites'=> array('name' => 'fruit')),
4. 'test' => array(array('name' => 'jippi')),
5. 'dot.test' => array(array('name' => 'jippi'))
6.);
7. $result = Set::extract($a, '{n}.{s}.name');
8. /* $result now looks like:
9. Array
10. (
11. [0] => Array
12. (
13. [0] => page
14.)
15. [1] => Array
16. (
17. [0] => fruit
18.)
19.)
20. */
21. $result = Set::extract($a, '{s}.{n}.name');
22. /* $result now looks like:
23. Array
24. (
25. [0] => Array
26. (
27. [0] => jippi
28.)
29. [1] => Array
30. (
31. [0] => jippi
32.)
33.)
34. */
35. $result = Set::extract($a,'{\w+}.{\w+}.name');
36. /* $result now looks like:
37. Array
38. (
39. [0] => Array
40. (
41. [pages] => page
42.)
43. [1] => Array
44. (
45. [fruites] => fruit
46.)
47. [test] => Array
48. (
49. [0] => jippi
50.)
51. [dot.test] => Array
52. (
53. [0] => jippi
54.)
55.)
56. */
57. $result = Set::extract($a,'{\d+}.{\w+}.name');
58. /* $result now looks like:
59. Array

60. (
61. [0] => Array
62. (
63. [pages] => page
64.)
65. [1] => Array
66. (
67. [fruites] => fruit
68.)
69.)
70. */
71. $result = Set::extract($a,'{n}.{\w+}.name');
72. /* $result now looks like:
73. Array
74. (
75. [0] => Array
76. (
77. [pages] => page
78.)
79. [1] => Array
80. (
81. [fruites] => fruit
82.)
83.)
84. */
85. $result = Set::extract($a,'{s}.{\d+}.name');
86. /* $result now looks like:
87. Array
88. (
89. [0] => Array
90. (
91. [0] => jippi
92.)
93. [1] => Array
94. (
95. [0] => jippi
96.)
97.)
98. */
99. $result = Set::extract($a,'{s}');
100. /* $result now looks like:
101. Array
102. (
103. [0] => Array
104. (
105. [0] => Array
106. (
107. [name] => jippi
108.)
109.)
110. [1] => Array
111. (
112. [0] => Array
113. (
114. [name] => jippi
115.)
116.)
117.)
118. */
119. $result = Set::extract($a,'{[a4z]}');

127. [name] => jippi
128.)
129.)
130. [dot.test] => Array
131. (
132. [0] => Array
133. (
134. [name] => jippi
135.)
136.)
137.)
138. */
139. $result = Set::extract($a, '{dot\.test}.{n}');
140. /* $result now looks like:
141. Array
142. (
143. [dot.test] => Array
144. (
145. [0] => Array
146. (
147. [name] => jippi
148.)
149.)
150.)
151. */

8.4.12 matches

boolean Set::matches ($conditions, $data=array(), $i = null, $
length=null)

Set::matches can be used to see if a single item or a given xpath match certain conditions.

1. $a = array(
2. array('Article' => array('id' => 1, 'title' => 'Article 1')),
3. array('Article' => array('id' => 2, 'title' => 'Article 2')),
4. array('Article' => array('id' => 3, 'title' => 'Article 3')));
5. $res=Set::matches(array('id>2'), $a[1]['Article']);
6. // returns false
7. $res=Set::matches(array('id>=2'), $a[1]['Article']);
8. // returns true
9. $res=Set::matches(array('id>=3'), $a[1]['Article']);
10. // returns false
11. $res=Set::matches(array('id<=2'), $a[1]['Article']);
12. // returns true
13. $res=Set::matches(array('id<2'), $a[1]['Article']);
14. // returns false
15. $res=Set::matches(array('id>1'), $a[1]['Article']);
16. // returns true
17. $res=Set::matches(array('id>1', 'id<3', 'id!=0'), $a[1]['Article']);
18. // returns true
19. $res=Set::matches(array('3'), null, 3);
20. // returns true
21. $res=Set::matches(array('5'), null, 5);
22. // returns true
23. $res=Set::matches(array('id'), $a[1]['Article']);
24. // returns true
25. $res=Set::matches(array('id', 'title'), $a[1]['Article']);
26. // returns true
27. $res=Set::matches(array('non4existant'), $a[1]['Article']);
28. // returns false
29. $res=Set::matches('/Article[id=2]', $a);
30. // returns true
31. $res=Set::matches('/Article[id=4]', $a);
32. // returns false
33. $res=Set::matches(array(), $a);
34. // returns true

1. // Common Usage:
2. $users = $this4>User4>find("all");
3. $results = Set::extract('/User/id', $users);
4. // results returns:
5. // array(1,2,3,4,5,...);

8.4.13 extract

array Set::extract ($path, $data=null, $options=array())

Set::extract uses basic XPath 2.0 syntax to return subsets of your data from a find or a find all.
This function allows you to retrieve your data quickly without having to loop through multi
dimentional arrays or traverse through tree structures.

If $path is an array or $data is empty it the call is delegated to Set::classicExtract.

Currently implemented selectors:

Selector Note

/User/id Similar to the classic {n}.User.id

/User[2]/name Selects the name of the second User

/User[id<2] Selects all Users with an id < 2

/User[id>2][<5] Selects all Users with an id > 2 but < 5

/Post/Comment[author_
name=john]/../name

Selects the name of all Posts that have at least one
Comment written by john

/Posts[title] Selects all Posts that have a 'title' key

/Comment/.[1] Selects the contents of the first comment

/Comment/.[:last] Selects the last comment

/Comment/.[:first] Selects the first comment

/Comment[text=/cakephp/i] Selects all comments that have a text matching the
regex /cakephp/i

/Comment/@* Selects the key names of all comments

Currently only absolute paths starting with a single '/' are supported. Please report any bugs as
you find them. Suggestions for additional features are welcome.

To learn more about Set::extract() refer to function testExtract() in /cake/tests/cases/libs/
set.test.php.

8.4.14 format

array Set::format ($data, $format, $keys)

Returns a series of values extracted from an array, formatted in a format string.

1. $data = array(
2. array('Person' => array('first_name' => 'Nate', 'last_name' =>
'Abele', 'city' => 'Boston', 'state' => 'MA', 'something' => '42')),
3. array('Person' => array('first_name' => 'Larry', 'last_name' =>
'Masters', 'city' => 'Boondock', 'state' => 'TN', 'something' => '{0}')),
4. array('Person' => array('first_name' => 'Garrett', 'last_name' =>
'Woodworth', 'city' => 'Venice Beach', 'state' => 'CA', 'something' => '{1}
')));
5. $res = Set::format($data, '{1}, {0}', array('{n}.Person.first_name', '{n}
.Person.last_name'));
6. /*
7. Array
8. (
9. [0] => Abele, Nate
10. [1] => Masters, Larry
11. [2] => Woodworth, Garrett
12.)
13. */
14. $res = Set::format($data, '{0}, {1}', array('{n}.Person.city', '{n}
.Person.state'));
15. /*
16. Array
17. (
18. [0] => Boston, MA
19. [1] => Boondock, TN
20. [2] => Venice Beach, CA
21.)
22. */
23. $res = Set::format($data, '{{0}, {1}}', array('{n}.Person.city', '{n}
.Person.state'));
24. /*
25. Array
26. (
27. [0] => {Boston, MA}
28. [1] => {Boondock, TN}
29. [2] => {Venice Beach, CA}
30.)
31. */
32. $res = Set::format($data, '{%2$d, %1$s}', array('{n}.Person.something',
'{n}.Person.something'));
33. /*
34. Array
35. (
36. [0] => {42, 42}
37. [1] => {0, {0}}
38. [2] => {0, {1}}
39.)
40. */
41. $res = Set::format($data, '%2$d, %1$s', array('{n}.Person.first_name',
'{n}.Person.something'));
42. /*
43. Array
44. (
45. [0] => 42, Nate
46. [1] => 0, Larry
47. [2] => 0, Garrett
48.)
49. */
50. $res = Set::format($data, '%1$s, %2$d', array('{n}.Person.first_name',

'{n}.Person.something'));
51. /*
52. Array
53. (
54. [0] => Nate, 42
55. [1] => Larry, 0
56. [2] => Garrett, 0
57.)
58. */

1. $res = Set::enum(1, 'one, two');
2. // $res is 'two'
3. $res = Set::enum('no', array('no' => 0, 'yes' => 1));
4. // $res is 0
5. $res = Set::enum('first', array('first' => 'one', 'second' => 'two'));
6. // $res is 'one'

8.4.15 enum

string Set::enum ($select, $list=null)

The enummethod works well when using html select elements. It returns a value from an array
list if the key exists.

If a comma separated $list is passed arrays are numeric with the key of the first being 0 $list =
'no, yes' would translate to $list = array(0 => 'no', 1 => 'yes');

If an array is used, keys can be strings example: array('no' => 0, 'yes' => 1);

$list defaults to 0 = no 1 = yes if param is not passed

8.4.16 numeric

array Set::numeric ($array=null)

Checks to see if all the values in the array are numeric

1. $data = array('one');
2. $res = Set::numeric(array_keys($data));
3.
4. // $res is true
5.
6. $data = array(1 => 'one');
7. $res = Set::numeric($data);
8. // $res is false
9.
10. $data = array('one');
11. $res = Set::numeric($data);
12.
13. // $res is false
14.
15. $data = array('one' => 'two');
16. $res = Set::numeric($data);
17.
18. // $res is false
19.
20. $data = array('one' => 1);
21. $res = Set::numeric($data);
22.
23. // $res is true
24.
25. $data = array(0);
26. $res = Set::numeric($data);
27.
28. // $res is true
29.
30. $data = array('one', 'two', 'three', 'four', 'five');
31. $res = Set::numeric(array_keys($data));
32.
33. // $res is true
34.
35. $data = array(1 => 'one', 2 => 'two', 3 => 'three', 4 => 'four', 5
=> 'five');
36. $res = Set::numeric(array_keys($data));
37.
38. // $res is true
39.
40. $data = array('1' => 'one', 2 => 'two', 3 => 'three', 4 => 'four',
5 => 'five');
41. $res = Set::numeric(array_keys($data));
42.
43. // $res is true
44.
45. $data = array('one', 2 => 'two', 3 => 'three', 4 => 'four', 'a' =>
'five');
46. $res = Set::numeric(array_keys($data));
47.
48. // $res is false

8.4.17 map

object Set::map ($class = 'stdClass', $tmp = 'stdClass')

This methodMaps the contents of the Set object to an object hierarchy while maintaining
numeric keys as arrays of objects.

Basically, the map function turns array items into initialized class objects. By default it turns
an array into a stdClass Object, however you can map values into any type of class. Example:
Set::map($array_of_values, 'nameOfYourClass');

1. $data = array(
2. array(
3. "IndexedPage" => array(
4. "id" => 1,
5. "url" => 'http://blah.com/',
6. 'hash' => '68a9f053b19526d08e36c6a9ad150737933816a5',
7. 'get_vars' => '',
8. 'redirect' => '',
9. 'created' => "1195055503",
10. 'updated' => "1195055503",
11.)
12.),
13. array(
14. "IndexedPage" => array(
15. "id" => 2,
16. "url" => 'http://blah.com/',
17. 'hash' => '68a9f053b19526d08e36c6a9ad150737933816a5',
18. 'get_vars' => '',
19. 'redirect' => '',
20. 'created' => "1195055503",
21. 'updated' => "1195055503",
22.),
23.)
24.);
25. $mapped = Set::map($data);
26. /* $mapped now looks like:
27. Array
28. (
29. [0] => stdClass Object
30. (
31. [_name_] => IndexedPage
32. [id] => 1
33. [url] => http://blah.com/
34. [hash] => 68a9f053b19526d08e36c6a9ad150737933816a5
35. [get_vars] =>
36. [redirect] =>
37. [created] => 1195055503
38. [updated] => 1195055503
39.)
40. [1] => stdClass Object
41. (
42. [_name_] => IndexedPage
43. [id] => 2
44. [url] => http://blah.com/
45. [hash] => 68a9f053b19526d08e36c6a9ad150737933816a5
46. [get_vars] =>
47. [redirect] =>
48. [created] => 1195055503
49. [updated] => 1195055503
50.)
51.)
52. */

Using Set::map() with a custom class for second parameter:

1. class MyClass {
2. function sayHi() {
3. echo 'Hi!';
4. }
5. }
6. $mapped = Set::map($data, 'MyClass');
7. //Now you can access all the properties as in the example above,
8. //but also you can call MyClass's methods
9. $mapped4>[0]4>sayHi();

1. $array1 = array('ModelOne' => array('id'=>1001, 'field_one'=>'a1.m1.f1',
'field_two'=>'a1.m1.f2'));
2. $array2 = array('ModelOne' => array('id'=>1003, 'field_one'=>'a3.m1.f1',
'field_two'=>'a3.m1.f2', 'field_three'=>'a3.m1.f3'));
3. $res = Set::pushDiff($array1, $array2);
4. /* $res now looks like:
5. Array
6. (
7. [ModelOne] => Array
8. (
9. [id] => 1001
10. [field_one] => a1.m1.f1
11. [field_two] => a1.m1.f2
12. [field_three] => a3.m1.f3
13.)
14.)
15. */

1. $array1 = array("a"=>"b", 1 => 20938, "c"=>"string");
2. $array2 = array("b"=>"b", 3 => 238, "c"=>"string", array("extra_field"));
3. $res = Set::pushDiff($array1, $array2);
4. /* $res now looks like:
5. Array
6. (
7. [a] => b
8. [1] => 20938
9. [c] => string
10. [b] => b
11. [3] => 238
12. [4] => Array
13. (
14. [0] => extra_field
15.)
16.)
17. */

8.4.18 pushDiff

array Set::pushDiff ($array1, $array2)

This function merges two arrays and pushes the differences in array2 to the bottom of the
resultant array.

Example 1

Example 2

1. $res = Set::filter(array('0', false, true, 0, array('one thing', 'I can
tell you', 'is you got to be', false)));
2. /* $res now looks like:
3. Array (
4. [0] => 0
5. [2] => 1
6. [3] => 0
7. [4] => Array
8. (
9. [0] => one thing
10. [1] => I can tell you
11. [2] => is you got to be
12. [3] =>
13.)
14.)
15. */

8.4.19 filter

array Set::filter ($var, $isArray=null)

Filters empty elements out of a route array, excluding '0'.

8.4.20 merge

array Set::merge ($arr1, $arr2=null)

This function can be thought of as a hybrid between PHP's array_merge and array_merge_
recursive. The difference to the two is that if an array key contains another array then the
function behaves recursive (unlike array_merge) but does not do if for keys containing strings
(unlike array_merge_recursive). See the unit test for more information.

This function will work with an unlimited amount of arguments and typecasts non�array
parameters into arrays.

1. $arry1 = array(
2. array(
3. 'id' => '48c2570e4dfa844c324a35e40d71cbdd56cb',
4. 'name' => 'mysql raleigh4workshop408 < 2008409405.sql ',
5. 'description' => 'Importing an sql dump'
6.),
7. array(
8. 'id' => '48c257a84cf7c44af24ac2f4114ecbdd56cb',
9. 'name' => 'pbpaste | grep 4i Unpaid | pbcopy',
10. 'description' => 'Remove all lines that say "Unpaid".',
11.)
12.);
13. $arry2 = 4;
14. $arry3 = array(0=>"test array", "cats"=>"dogs", "people" => 1267);
15. $arry4 = array("cats"=>"felines", "dog"=>"angry");
16. $res = Set::merge($arry1, $arry2, $arry3, $arry4);
17. /* $res now looks like:
18. Array
19. (
20. [0] => Array
21. (
22. [id] => 48c2570e4dfa844c324a35e40d71cbdd56cb
23. [name] => mysql raleigh4workshop408 < 2008409405.sql
24. [description] => Importing an sql dump
25.)
26. [1] => Array
27. (
28. [id] => 48c257a84cf7c44af24ac2f4114ecbdd56cb
29. [name] => pbpaste | grep 4i Unpaid | pbcopy
30. [description] => Remove all lines that say "Unpaid".
31.)
32. [2] => 4
33. [3] => test array
34. [cats] => felines
35. [people] => 1267
36. [dog] => angry
37.)
38. */

8.4.21 contains

boolean Set::contains ($val1, $val2 = null)

Determines if one Set or array contains the exact keys and values of another.

1. $a = array(
2. 0 => array('name' => 'main'),
3. 1 => array('name' => 'about')
4.);
5. $b = array(
6. 0 => array('name' => 'main'),
7. 1 => array('name' => 'about'),
8. 2 => array('name' => 'contact'),
9. 'a' => 'b'
10.);
11. $result = Set::contains($a, $a);
12. // True
13. $result = Set::contains($a, $b);
14. // False
15. $result = Set::contains($b, $a);
16. // True

1. if (($posts = Cache::read('posts')) === false) {
2. $posts = $this4>Post4>find('all');
3. Cache::write('posts', $posts);
4. }

8.5 Security

The security library (http://api.cakephp.org/class/security) handles basic security
measures such as providing methods for hashing and encrypting data.

8.6 Cache

The Cache class in CakePHP provides a generic frontend for several backend caching systems.
Different Cache configurations and engines can be setup in your app/config/core.php

8.6.1 Cache::read()

Cache::read($key, $config = null)

Cache::read() is used to read the cached value stored under $key from the $config. If $config
is null the default config will be used. Cache::read() will return the cached value if it is a
valid cache or false if the cache has expired or doesn't exist.

8.6.2 Cache::write()

Cache::write($key, $value, $config = null);

Cache::write() will write a $value to the Cache. You can read or delete this value later by
refering to it by $key. Youmay specify an optional configuration to store the cache in as well.
If no $config is specified default will be used. Cache::write() can store any type of object and
is ideal for storing results of model finds.

Using Cache::write() and Cache::read() to easily reduce the number of trips made to the
database to fetch posts.

8.6.3 Cache::delete()

1. Cache::config('short', array(
2. 'engine' => 'File',
3. 'duration'=> '+1 hours',
4. 'path' => CACHE,
5. 'prefix' => 'cake_short_'
6.));
7. // long
8. Cache::config('long', array(
9. 'engine' => 'File',
10. 'duration'=> '+1 week',
11. 'probability'=> 100,
12. 'path' => CACHE . 'long' . DS,
13.));

1. Cache::set(array('duration' => '+30 days'));
2. Cache::write('results', $data);
3. // Later on
4. Cache::set(array('duration' => '+30 days'));
5. $results = Cache::read('results');

Cache::delete($key, $config = null)

Cache::delete() will allow you to completely remove a cached object from the Cache store.

8.6.4 Cache::config()

Cache::config() is used to create additional Cache configurations. These additional
configurations can have different duration, engines, paths, or prefixes than your default cache
config. Using multiple cache configurations can help reduce the number of times you need to
use Cache::set() as well as centralize all your cache settings.

Youmust specify which engine to use. It does not default to File.

By placing the above code in your app/config/core.php you will have two additional
Cache configurations. The name of these configurations 'short' or 'long' is used as the $
config parameter for Cache::write() and Cache::read().

8.6.5 Cache::set()

Cache::set() allows you to temporarily override a cache configs settings for one operation
(usually a read or write). If you use Cache::set() to change the settings for a write, you
should also use Cache::set() before reading the data back in. If you fail to do so, the default
settings will be used when the cache key is read.

If you find yourself repeatedly calling Cache::set() perhaps you should create a new Cache
configuration (http://book.cakephp.org/view/772/Cache+config) . This will remove the
need to call Cache::set().

8.7 HttpSocket

CakePHP includes an HttpSocket class which can be used easily for making requests, such as
those to web services.

1. App::import('Core', 'HttpSocket');
2. $HttpSocket = new HttpSocket();
3. $results = $HttpSocket4>get('www.google.com/search', 'q=cakephp');
4. //returns html for Google's search results for the query "cakephp"

1. App::import('Core', 'HttpSocket');
2. $HttpSocket = new HttpSocket();
3. $results = $HttpSocket4>post('www.somesite.com/add', array('name' =>
'test', 'type' => 'user'));
4. //$results contains what is returned from the post.

8.7.1 get

The get methodmakes a simple HTTP GET request returning the results.

string function get ($uri, $query, $request)

$uri is the web address where the request is being made; $query is any query string
parameters, either in string form: "param1=foo¶m2=bar" or as a keyed array: array
('param1' => 'foo', 'param2' => 'bar').

8.7.2 post

The post methodmakes a simple HTTP POST request returning the results.

string function post ($uri, $data, $request)

The parameters for the postmethod are almost the same as the get method, $uri is the web
address where the request is being made; $query is the data to be posted, either in string form:
"param1=foo¶m2=bar" or as a keyed array: array('param1' => 'foo', 'param2' => 'bar').

8.7.3 request

The base request method, which is called from all the wrappers (get, post, put, delete). Returns
the results of the request.

string function request($request)

$request is a keyed array of various options. Here is the format and default settings:

1. var $request = array(
2. 'method' => 'GET',
3. 'uri' => array(
4. 'scheme' => 'http',
5. 'host' => null,
6. 'port' => 80,
7. 'user' => null,
8. 'pass' => null,
9. 'path' => null,
10. 'query' => null,
11. 'fragment' => null
12.),
13. 'auth' => array(
14. 'method' => 'Basic',
15. 'user' => null,
16. 'pass' => null
17.),
18. 'version' => '1.1',
19. 'body' => '',
20. 'line' => null,
21. 'header' => array(
22. 'Connection' => 'close',
23. 'User4Agent' => 'CakePHP'
24.),
25. 'raw' => null,
26. 'cookies' => array()
27.);

9 Core Console Applications

CakePHP features a number of console applications out of the box. Some of these applications
are used in concert with other CakePHP features (like ACL or i18n), and others are for general
use in getting you to launch quicker.

This section explains how to use the core console applications packaged with CakePHP.

Before you dive in here, youmay want to check out the CakePHP Console section (http://
book.cakephp.org/view/108/the+cakephp+console) covered earlier. Console setup isn't
covered here, so if you've never used the console before, check it out.

9.1 Code Generation with Bake

You’ve already learned about scaffolding in CakePHP: a simple way to get up and running with
only a database and some bare classes. CakePHP’s Bake console is another effort to get you up
and running in CakePHP – fast. The Bake console can create any of CakePHP’s basic
ingredients: models, views and controllers. And we aren’t just talking skeleton classes: Bake
can create a fully functional application in just a few minutes. In fact, Bake is a natural step to
take once an application has been scaffolded.

Those new to Bake (especially Windows users) may find theBake screencast (http://
cakephp.org/screencasts/view/6) helpful in setting things up before continuing.

Depending on the configuration of your setup, youmay have to set execute rights on the cake
bash script or call it using ./cake bake. The cake console is run using the PHP CLI
(command line interface). If you have problems running the script, ensure that you have the
PHP CLI installed and that it has the proper modules enabled (eg: MySQL).

When running Bake for the first time, you'll be prompted to create a Database Configuration
file, if you haven't created one already.

After you've created a Database Configuration file, running Bake will present you with the
following options:

444
App : app
Path: /path4to/project/app
444
Interactive Bake Shell
444
[D]atabase Configuration
[M]odel
[V]iew
[C]ontroller
[P]roject
[Q]uit
What would you like to Bake? (D/M/V/C/P/Q)
>

Alternatively, you can run any of these commands directly from the command line:

$ cake bake db_config
$ cake bake model
$ cake bake view
$ cake bake controller
$ cake bake project
$ cake bake test

9.2 Schema management and migrations

The SchemaShell provides a functionality to create schema objects, schema sql dumps as well
as create snapshots and restore database snapshots.

9.2.1 Generating and using Schema files

A generated schema file allows you to easily transport a database agnostic schema. You can
generate a schema file of your database using:

$ cake schema generate

This will generate a schema.php file in you app/config/sql directory.

The schema shell will only process tables for which there are models defined. To force the
schema shell to process all the tables, youmust add the 4f option in the command line.

To later rebuild the database schema from your previously made schema.php file run:

$ cake schema run create

This will drop and create the tables based on the contents of the schema.php.

Schema files can also be used to generate sql dump files. To generate a sql file containing the
CREATE TABLE statements, run:

$ cake schema dump filename.sql

Where filename.sql is the desired filename for the sql dump. If you omit filename.sql the sql
dump will be output to the console but not written to a file.

9.2.2 Migrations with CakePHP schema shell

Migrations allow for versioning of your database schema, so that as you develop features you
have an easy and database agnostic way to distribute database changes. Migrations are
achieved through either SCM controlled schema files or schema snapshots. Versioning a
schema file with the schema shell is quite easy. If you already have a schema file created
running

$ cake schema generate

Will bring up the following choices:

Generating Schema...
Schema file exists.
 [O]verwrite
 [S]napshot

1. cake bake project 4skel vendors/shells/templates/skel

 [Q]uit
Would you like to do? (o/s/q)

Choosing [s] (snapshot) will create an incremented schema.php. So if you have schema.php, it
will create schema_2.php and so on. You can then restore to any of these schema files at any
time by running:

$ cake schema run update 4s 2

Where 2 is the snapshot number you wish to run. The schema shell will prompt you to confirm
you wish to perform the ALTER statements that represent the difference between the existing
database the currently executing schema file.

You can perform a dry run by adding a 4dry to your command.

9.3 Modify default HTML produced by "baked " templates

If you wish to modify the default HTML output produced by the "bake" command, follow these
simple steps:

For baking custom views:

1. Go into: cake/console/libs/templates/views
2. Notice the 4 files there
3. Copy them to your: app/vendors/shells/templates/views
4. Make changes to the HTML output to control the way "bake" builds your views

For baking custom projects:

1. Go into: cake/console/libs/templates/skel
2. Notice the base application files there
3. Copy them to your: app/vendors/shells/templates/skel
4. Make changes to the HTML output to control the way "bake" builds your views
5. Pass the skeleton path parameter to the project task

Notes

Youmust run the specific project task cake bake project so that the path
parameter can be passed.
The template path is relative to the current path of the Command Line Interface.
Since the full path to the skeleton needs to be manually entered, you can specify any
directory holding your template build you want, including using multiple templates.
(Unless Cake starts supporting overriding the skel folder like it does for views)

10 Tutorials & Examples

In this section, you can walk through typical CakePHP applications to see how all of the pieces
come together.

Alternatively, you can refer to CakeForge (http://cakeforge.org/) and theBakery (http://
bakery.cakephp.org/) for existing applications and components. Don't forget that you can
also view the source code of this cook book (http://thechaw.com/cakebook/) .

10.1 Blog

Welcome to Cake! You're probably checking out this tutorial because you want to learn more
about how Cake works. It's our aim to increase productivity andmake coding more enjoyable:
we hope you'll see this as you dive into the code.

This tutorial will walk you through the creation of a simple blog application. We'll be getting
and installing Cake, creating and configuring a database, and creating enough application
logic to list, add, edit, and delete blog posts.

Here's what you'll need:

1. A running web server. We're going to assume you're using Apache, though the
instructions for using other servers should be very similar. We might have to play a little
with the server configuration, but most folks can get Cake up and running without any
configuration at all.

2. A database server. We're going to be using mySQL in this tutorial. You'll need to know
enough about SQL in order to create a database: Cake will be taking the reins from
there.

3. Basic PHP knowledge. The more object�oriented programming you've done, the better:
but fear not if you're a procedural fan.

4. Finally, you'll need a basic knowledge of the MVC programming pattern. A quick
overview can be found in Chapter "Beginning With CakePHP", Section :
Understanding Model+View+Controller (http://book.cakephp.org/view/10/) .
Don't worry: its only a half a page or so.

Let's get started!

10.1.1 Getting Cake

First, let's get a copy of fresh Cake code.

To get a fresh download, visit the CakePHP project at Cakeforge: http://cakeforge.org/
projects/cakephp/ (http://cakeforge.org/projects/cakephp/) and download the stable
release. For this tutorial you need 1.2.x.x

You can also checkout/export a fresh copy of our trunk code at: https://svn.cakephp.org/
repo/trunk/cake/1.2.x.x/ (https://svn.cakephp.org/repo/trunk/cake/1.2.x.x/)

Regardless of how you downloaded it, place the code inside of your DocumentRoot. Once
finished, your directory setup should look something like the following:

1. /path_to_document_root
2. /app
3. /cake
4. /docs
5. /vendors
6. .htaccess
7. index.php

1. /* First, create our posts table: */
2. CREATE TABLE posts (
3. id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
4. title VARCHAR(50),
5. body TEXT,
6. created DATETIME DEFAULT NULL,
7. modified DATETIME DEFAULT NULL
8.);
9. /* Then insert some posts for testing: */
10. INSERT INTO posts (title,body,created)
11. VALUES ('The title', 'This is the post body.', NOW());
12. INSERT INTO posts (title,body,created)
13. VALUES ('A title once again', 'And the post body follows.', NOW());
14. INSERT INTO posts (title,body,created)
15. VALUES ('Title strikes back', 'This is really exciting! Not.', NOW()
);

Now might be a good time to learn a bit about how Cake's directory structure works: check out
Chapter "Basic Principles of CakePHP", Section : CakePHP File Structure (http://
book.cakephp.org/view/19/) .

10.1.2 Creating the Blog Database

Next, lets set up the underlying database for our blog. Right now, we'll just create a single table
to store our posts. We'll also throw in a few posts right now to use for testing purposes. Execute
the following SQL statements into your database:

The choices on table and column names are not arbitrary. If you follow Cake's database
naming conventions, and Cake's class naming conventions (both outlined in "CakePHP
Conventions" (http://book.cakephp.org/view/22)), you'll be able to take advantage of a
lot of free functionality and avoid configuration. Cake is flexible enough to accomodate even
the worst legacy database schema, but adhering to convention will save you time.

Check out "CakePHP Conventions" (http://book.cakephp.org/view/22/) for more
information, but suffice it to say that naming our table 'posts' automatically hooks it to our Post
model, and having fields called 'modified' and 'created' will be automagically managed by
Cake.

10.1.3 Cake Database Configuration

Onward and upward: let's tell Cake where our database is and how to connect to it. For many,
this is the first and last time you configure anything.

A copy of CakePHP's database configuration file is found in /app/config/
database.php.default. Make a copy of this file in the same directory, but name it
database.php.

1. var $default = array(
2. 'driver' => 'mysql',
3. 'persistent' => 'false',
4. 'host' => 'localhost',
5. 'port' => '',
6. 'login' => 'cakeBlog',
7. 'password' => 'c4k34rUl3Z',
8. 'database' => 'cake_blog_tutorial',
9. 'schema' => '',
10. 'prefix' => '',
11. 'encoding' => ''
12.);

1. <?php
2. /**
3. * A random string used in security hashing methods.
4. */
5. Configure::write('Security.salt', 'pl345e4P45s_7h3*S@l7!');
6. ?>

1. $ chown 4R www4data app/tmp

The config file should be pretty straightforward: just replace the values in the $default array
with those that apply to your setup. A sample completed configuration array might look
something like the following:

Once you've saved your new database.php file, you should be able to open your browser and
see the Cake welcome page. It should also tell you that your database connection file was
found, and that Cake can successfully connect to the database.

10.1.4 Optional Configuration

There are two other items that can be configured. Most developers complete these laundry�list
items, but they're not required for this tutorial. One is defining a custom string (or "salt") for
use in security hashes. The second item is allowing CakePHP write access to its tmp folder.

The security salt is used for generating hashes. Change the default salt value by editing /app/
config/core.php line 153. It doesn't much matter what the new value is, as long as it's not
easily guessed.

The final task is to make the app/tmp directory web�writable. The best way to do this is to find
out what user your webserver runs as (<?php echo `whoami`; ?>) and change the
ownership of the app/tmp directory to that user. The final command you run (in *nix) might
look something like this.

If for some reason CakePHP can't write to that directory, you'll be informed by a warning while
not in production mode.

10.1.5 A Note on mod_rewrite

Occasionally a new user will run in to mod_rewrite issues, so I'll mention themmarginally
here. If the CakePHP welcome page looks a little funny (no images or css styles), it probably
means mod_rewrite isn't functioning on your system. Here are some tips to help get you up and
running:

1. Configure::write('App.baseUrl', env('SCRIPT_NAME'));

1. /.htaccess
2. /app/.htaccess
3. /app/webroot/.htaccess
4.

1. <?php
2. class Post extends AppModel {
3. var $name = 'Post';
4. }
5. ?>

1. Make sure that an .htaccess override is allowed: in your httpd.conf, you should
have a section that defines a section for each Directory on your server. Make sure the
AllowOverride is set to All for the correct Directory. For security and performance
reasons, do not set AllowOverride to All in <Directory />. Instead, look for the
<Directory> block that refers to your actual website directory.

2. Make sure you are editing the correct httpd.conf rather than a user� or site�specific
httpd.conf.

3. For some reason or another, youmight have obtained a copy of CakePHP without the
needed .htaccess files. This sometimes happens because some operating systems
treat files that start with '.' as hidden, and don't copy them. Make sure your copy of
CakePHP is from the downloads section of the site or our SVN repository.

4. Make sure Apache is loading upmod_rewrite correctly! You should see something like
LoadModule rewrite_module libexec/httpd/mod_rewrite.so or (for
Apache 1.3) AddModule mod_rewrite.c in your httpd.conf.

If you don't want or can't get mod_rewrite (or some other compatible module) up and running
on your server, you'll need to use Cake's built in pretty URLs. In /app/config/core.php,
uncomment the line that looks like:

Also remove these .htaccess files:

This will make your URLs look like www.example.com/index.php/controllername/
actionname/param rather than www.example.com/controllername/actionname/
param.

10.1.6 Create a Post Model

The Model class is the bread and butter of CakePHP applications. By creating a CakePHP
model that will interact with our database, we'll have the foundation in place needed to do our
view, add, edit, and delete operations later.

CakePHP's model class files go in /app/models, and the file we'll be creating will be saved to
/app/models/post.php. The completed file should look like this:

Naming convention is very important in CakePHP. By naming our model Post, CakePHP can
automatically infer that this model will be used in the PostsController, and will be tied to a
database table called posts.

CakePHP will dynamically create a model object for you, if it cannot find a corresponding file
in /app/models. This also means, that if you accidentally name your file wrong (i.e.

1. <?php
2. class PostsController extends AppController {
3. var $name = 'Posts';
4. }
5. ?>

1. <?php
2. class PostsController extends AppController {
3. var $name = 'Posts';
4. function index() {
5. $this4>set('posts', $this4>Post4>find('all'));
6. }
7. }
8. ?>

Post.php or posts.php) CakePHP will not recognize any of your settings and will use the
defaults instead.

The $name variable is always a good idea to add, and is used to overcome some class name
oddness in PHP4.

For more on models, such as table prefixes, callbacks, and validation, check out theModels
(http://book.cakephp.org/view/66/) chapter of the Manual.

10.1.7 Create a Posts Controller

Next, we'll create a controller for our posts. The controller is where all the business logic for
post interaction will happen. In a nutshell, it's the place where you play with the models and
get post�related work done. We'll place this new controller in a file called posts_
controller.php inside the /app/controllers directory. Here's what the basic
controller should look like:

Now, lets add an action to our controller. Actions often represent a single function or interface
in an application. For example, when users request www.example.com/posts/index
(which is also the same as www.example.com/posts/), they might expect to see a listing of
posts. The code for that action would look something like this:

Let me explain the action a bit. By defining function index() in our PostsController, users
can now access the logic there by requesting www.example.com/posts/index. Similarly,
if we were to define a function called foobar(), users would be able to access that at
www.example.com/posts/foobar.

Youmay be tempted to name your controllers and actions a certain way to obtain a certain
URL. Resist that temptation. Follow CakePHP conventions (plural controller names, etc.) and
create readable, understandable action names. You can map URLs to your code using "routes"
covered later on.

The single instruction in the action uses set() to pass data from the controller to the view
(which we'll create next). The line sets the view variable called 'posts' equal to the return value
of the find('all')method of the Post model. Our Post model is automatically available at $
this4>Post because we've followed Cake's naming conventions.

To learn more about Cake's controllers, check out Chapter "Developing with CakePHP" section:
"Controllers" (http://book.cakephp.org/view/49/) .

10.1.8 Creating Post Views

Now that we have our data flowing to our model, and our application logic and flow defined by
our controller, let's create a view for the index action we created above.

Cake views are just presentation�flavored fragments that fit inside an application's layout. For
most applications they're HTML mixed with PHP, but they may end up as XML, CSV, or even
binary data.

Layouts are presentation code that is wrapped around a view, and can be defined and switched
between, but for now, let's just use the default.

Remember in the last section how we assigned the 'posts' variable to the view using the set()
method? That would hand down data to the view that would look something like this:

// print_r($posts) output:

Array
(

[0] => Array
(

[Post] => Array
(

[id] => 1
[title] => The title
[body] => This is the post

body.
[created] => 2008402413

18:34:55
[modified] =>

)
)

[1] => Array
(

[Post] => Array
(

[id] => 2
[title] => A title once

again
[body] => And the post

body follows.
[created] => 2008402413

18:34:56
[modified] =>

)
)

[2] => Array
(

[Post] => Array
(

[id] => 3
[title] => Title strikes

back

1. <!44 File: /app/views/posts/index.ctp 44>
2. <h1>Blog posts</h1>
3. <table>
4. <tr>
5. <th>Id</th>
6. <th>Title</th>
7. <th>Created</th>
8. </tr>
9. <!44 Here is where we loop through our $posts array, printing out
post info 44>
10. <?php foreach ($posts as $post): ?>
11. <tr>
12. <td><?php echo $post['Post']['id']; ?></td>
13. <td>
14. <?php echo $html4>link($post['Post']['title'],
15. "/posts/view/".$post['Post']['id']); ?>
16. </td>
17. <td><?php echo $post['Post']['created']; ?></td>
18. </tr>
19. <?php endforeach; ?>
20.
21. </table>

[body] => This is really
exciting! Not.

[created] => 2008402413
18:34:57

[modified] =>
)

)
)

Cake's view files are stored in /app/views inside a folder named after the controller they
correspond to (we'll have to create a folder named 'posts' in this case). To format this post data
in a nice table, our view code might look something like this:

Hopefully this should look somewhat simple.

Youmight have noticed the use of an object called $html. This is an instance of the CakePHP
HtmlHelper class. CakePHP comes with a set of view helpers that make things like linking,
form output, JavaScript and Ajax a snap. You can learn more about how to use them in
Chapter "Built+in Helpers" (http://book.cakephp.org/view/181/) , but what's important
to note here is that the link()method will generate an HTML link with the given title (the
first parameter) and URL (the second parameter).

When specifying URLs in Cake, you simply give a path relative to the base of the application,
and Cake fills in the rest. As such, your URLs will typically take the form of /controller/
action/param1/param2.

At this point, you should be able to point your browser to http://www.example.com/
posts/index. You should see your view, correctly formatted with the title and table listing of
the posts.

If you happened to have clicked on one of the links we created in this view (that link a post's
title to a URL /posts/view/some_id), you were probably informed by CakePHP that the
action hasn't yet been defined. If you were not so informed, either something has gone wrong,

1. <?php
2. class PostsController extends AppController {
3. var $name = 'Posts';
4. function index() {
5. $this4>set('posts', $this4>Post4>find('all'));
6. }
7. function view($id = null) {
8. $this4>Post4>id = $id;
9. $this4>set('post', $this4>Post4>read());
10. }
11. }
12. ?>

1. <!44 File: /app/views/posts/view.ctp 44>
2. <h1><?php echo $post['Post']['title']?></h1>
3. <p><small>Created: <?php echo $post['Post']['created']?></small></p>
4. <p><?php echo $post['Post']['body']?></p>

or you actually did define it already, in which case you are very sneaky. Otherwise, we'll create
it in the PostsController now:

The set() call should look familiar. Notice we're using read() rather than find('all')
because we only really want a single post's information.

Notice that our view action takes a parameter: the ID of the post we'd like to see. This
parameter is handed to the action through the requested URL. If a user requests /posts/
view/3, then the value '3' is passed as $id.

Now let's create the view for our new 'view' action and place it in /app/views/posts/
view.ctp.

Verify that this is working by trying the links at /posts/index or manually requesting a post
by accessing /posts/view/1.

10.1.9 Adding Posts

Reading from the database and showing us the posts is a great start, but let's allow for the
adding of new posts.

First, start by creating an add() action in the PostsController:

1. <?php
2. class PostsController extends AppController {
3. var $name = 'Posts';
4. function index() {
5. $this4>set('posts', $this4>Post4>find('all'));
6. }
7. function view($id) {
8. $this4>Post4>id = $id;
9. $this4>set('post', $this4>Post4>read());
10. }
11. function add() {
12. if (!empty($this4>data)) {
13. if ($this4>Post4>save($this4>data)) {
14. $this4>Session4>setFlash('Your post has been saved.');
15. $this4>redirect(array('action' => 'index'));
16. }
17. }
18. }
19. }
20. ?>

Here's what the add() action does: if the submitted form data isn't empty, try to save the data
using the Post model. If for some reason it doesn't save, just render the view. This gives us a
chance to show the user validation errors or other warnings.

When a user uses a form to POST data to your application, that information is available in $
this4>data. You can use the pr() or debug functions to print it out if you want to see what
it looks like.

We use the Session component's setFlash() (http://book.cakephp.org/view/400/
setFlash) function to set a message to a session variable to be displayed on the page after
redirection. In the layout we have $session%>flash() (http://book.cakephp.org/
view/568/flash) which displays the message and clears the corresponding session variable.
The controller's redirect (http://book.cakephp.org/view/425/redirect) function
redirects to another URL. The param array('action'=>'index) translates to URL /
posts i.e the index action of posts controller. You can refer to Router::url (http://
api.cakephp.org/class/router#method+Routerurl) function on the api to see the formats in
which you can specify a URL for various cake functions.

Calling the save()method will check for validation errors and abort the save if any occur.
We'll discuss how those errors are handled in the following sections.

10.1.10 Data Validation

Cake goes a long way in taking the monotony out of form input validation. Everyone hates
coding up endless forms and their validation routines. CakePHP makes it easier and faster.

To take advantage of the validation features, you'll need to use Cake's FormHelper in your
views. The FormHelper is available by default to all views at $form.

Here's our add view:

1. <!44 File: /app/views/posts/add.ctp 44>
2.
3. <h1>Add Post</h1>
4. <?php
5. echo $form4>create('Post');
6. echo $form4>input('title');
7. echo $form4>input('body', array('rows' => '3'));
8. echo $form4>end('Save Post');
9. ?>

1. <form id="PostAddForm" method="post" action="/posts/add">

1. <?php echo $html4>link('Add Post',array('controller' => 'posts',
'action' => 'add'))?>

1. <?php
2. class Post extends AppModel
3. {
4. var $name = 'Post';
5. var $validate = array(
6. 'title' => array(
7. 'rule' => 'notEmpty'
8.),
9. 'body' => array(
10. 'rule' => 'notEmpty'
11.)
12.);
13. }
14. ?>

Here, we use the FormHelper to generate the opening tag for an HTML form. Here's the HTML
that $form4>create() generates:

If create() is called with no parameters supplied, it assumes you are building a form that
submits to the current controller's add() action (or edit() action when id is included in the
form data), via POST.

The $form4>input()method is used to create form elements of the same name. The first
parameter tells CakePHP which field they correspond to, and the second parameter allows you
to specify a wide array of options � in this case, the number of rows for the textarea. There's a
bit of introspection and automagic here: input() will output different form elements based on
the model field specified.

The $form4>end() call generates a submit button and ends the form. If a string is supplied
as the first parameter to end(), the FormHelper outputs a submit button named accordingly
along with the closing form tag. Again, refer to Chapter "Built+in Helpers" (http://
book.cakephp.org/view/181/) for more on helpers.

Now let's go back and update our /app/views/posts/index.ctp view to include a new
"Add Post" link. Before the <table>, add the following line:

Youmay be wondering: how do I tell CakePHP about my validation requirements? Validation
rules are defined in the model. Let's look back at our Post model andmake a few adjustments:

The $validate array tells CakePHP how to validate your data when the save()method is
called. Here, I've specified that both the body and title fields must not be empty. CakePHP's
validation engine is strong, with a number of pre�built rules (credit card numbers, email
addresses, etc.) and flexibility for adding your own validation rules. For more information on

1. function delete($id) {
2. $this4>Post4>delete($id);
3. $this4>Session4>setFlash('The post with id: '.$id.' has been
deleted.');
4. $this4>redirect(array('action'=>'index'));
5. }

1. /app/views/posts/index.ctp
2. <h1>Blog posts</h1>
3. <p><?php echo $html4>link('Add Post', array('action' => 'add')); ?></p>
4. <table>
5. <tr>
6. <th>Id</th>
7. <th>Title</th>
8. <th>Actions</th>
9. <th>Created</th>
10. </tr>
11. <!44 Here's where we loop through our $posts array, printing out post
info 44>
12. <?php foreach ($posts as $post): ?>
13. <tr>
14. <td><?php echo $post['Post']['id']; ?></td>
15. <td>
16. <?php echo $html4>link($post['Post']['title'], array('action'
=> 'view', 'id' => $post['Post']['id']));?>
17. </td>
18. <td>
19. <?php echo $html4>link('Delete', array('action' => 'delete',
'id' => $post['Post']['id']), null, 'Are you sure?')?>
20. </td>
21. <td><?php echo $post['Post']['created']; ?></td>
22. </tr>
23. <?php endforeach; ?>
24.
25. </table>

that setup, check theData Validation chapter (http://book.cakephp.org/view/125/
data+validation) .

Now that you have your validation rules in place, use the app to try to add a post with an empty
title or body to see how it works. Since we've used the input()method of the FormHelper to
create our form elements, our validation error messages will be shown automatically.

10.1.11 Deleting Posts

Next, let's make a way for users to delete posts. Start with a delete() action in the
PostsController:

This logic deletes the post specified by $id, and uses $this4>Session4>setFlash() to
show the user a confirmation message after redirecting them on to /posts.

Because we're just executing some logic and redirecting, this action has no view. Youmight
want to update your index view with links that allow users to delete posts, however:

This view code also uses the HtmlHelper to prompt the user with a JavaScript confirmation
dialog before they attempt to delete a post.

1. function edit($id = null) {
2. $this4>Post4>id = $id;
3. if (empty($this4>data)) {
4. $this4>data = $this4>Post4>read();
5. } else {
6. if ($this4>Post4>save($this4>data)) {
7. $this4>Session4>setFlash('Your post has been updated.');
8. $this4>redirect(array('action' => 'index'));
9. }
10. }
11. }

1. /app/views/posts/edit.ctp
2.
3. <h1>Edit Post</h1>
4. <?php
5. echo $form4>create('Post', array('action' => 'edit'));
6. echo $form4>input('title');
7. echo $form4>input('body', array('rows' => '3'));
8. echo $form4>input('id', array('type'=>'hidden'));
9. echo $form4>end('Save Post');
10. ?>

10.1.12 Editing Posts

Post editing: here we go. You're a CakePHP pro by now, so you should have picked up a
pattern. Make the action, then the view. Here's what the edit() action of the PostsController
would look like:

This action first checks for submitted form data. If nothing was submitted, it finds the Post and
hands it to the view. If some data has been submitted, try to save the data using Post model (or
kick back and show the user the validation errors).

The edit view might look something like this:

This view outputs the edit form (with the values populated), along with any necessary
validation error messages.

One thing to note here: CakePHP will assume that you are editing a model if the 'id' field is
present in the data array. If no 'id' is present (look back at our add view), Cake will assume that
you are inserting a new model when save() is called.

You can now update your index view with links to edit specific posts:

1. /app/views/posts/index.ctp (edit links added)
2.
3. <h1>Blog posts</h1>
4. <p><?php echo $html4>link("Add Post", array('action'=>'add')); ?>
5. <table>
6. <tr>
7. <th>Id</th>
8. <th>Title</th>
9. <th>Action</th>
10. <th>Created</th>
11. </tr>
12. <!44 Here's where we loop through our $posts array, printing out post
info 44>
13. <?php foreach ($posts as $post): ?>
14. <tr>
15. <td><?php echo $post['Post']['id']; ?></td>
16. <td>
17. <?php echo $html4>link($post['Post']['title'],array
('action'=>'view', 'id'=>$post['Post']['id']));?>
18. </td>
19. <td>
20. <?php echo $html4>link(
21. 'Delete',
22. array('action'=>'delete', 'id'=>$post['Post']['id']),
23. null,
24. 'Are you sure?'
25.)?>
26. <?php echo $html4>link('Edit', array('action'=>'edit',
'id'=>$post['Post']['id']));?>
27. </td>
28. <td><?php echo $post['Post']['created']; ?></td>
29. </tr>
30. <?php endforeach; ?>
31.
32. </table>

1. Router::connect ('/', array('controller'=>'pages', 'action'=>'display',
'home'));

10.1.13 Routes

For some, CakePHP's default routing works well enough. Developers who are sensitive to user�
friendliness and general search engine compatibility will appreciate the way that CakePHP's
URLs map to specific actions. So we'll just make a quick change to routes in this tutorial.

For more information on advanced routing techniques, see "Routes
Configuration" (http://book.cakephp.org/view/46/) .

By default, CakePHP responds to a request for the root of your site (i.e. http://
www.example.com) using its PagesController, rendering a view called "home". Instead, we'll
replace this with our PostsController by creating a routing rule.

Cake's routing is found in /app/config/routes.php. You'll want to comment out or
remove the line that defines the default root route. It looks like this:

This line connects the URL '/' with the default CakePHP home page. We want it to connect
with our own controller, so add a line that looks like this:

1. Router::connect ('/', array('controller'=>'posts', 'action'=>'index'));

This should connect users requesting '/' to the index() action of our soon�to�be�created
PostsController.

CakePHP also makes use of 'reverse routing' � if with the above route defined you pass array
('controller'=>'posts', 'action'=>'index') to a function expecting an array,
the resultant url used will be '/'. It's therefore a good idea to always use arrays for urls as this
means your routes define where a url goes, and also ensures that links point to the same place
too.

10.1.14 Conclusion

Creating applications this way will win you peace, honor, love, andmoney beyond even your
wildest fantasies. Simple, isn't it? Keep in mind that this tutorial was very basic. CakePHP has
manymore features to offer, and is flexible in ways we didn't wish to cover here for simplicity's
sake. Use the rest of this manual as a guide for building more feature�rich applications.

Now that you've created a basic Cake application you're ready for the real thing. Start your own
project, read the rest of theManual (http://book.cakephp.org/) andAPI (http://
api.cakephp.org/) .

If you need help, come see us in #cakephp. Welcome to CakePHP!

10.2 Simple Acl controlled Application

In this tutorial you will create a simple application with authentication (http://
book.cakephp.org/view/172/Authentication) and access control lists (http://
book.cakephp.org/view/171/Access+Control+Lists) . This tutorial assumes you have read
theBlog (http://book.cakephp.org/view/219/Blog) tutorial, and you are familiar with
Bake (http://book.cakephp.org/view/113/Code+Generation+with+Bake) . You should
have some experience with CakePHP, and be familiar with MVC concepts. This tutorial is a
brief introduction to the AuthComponent (http://api.cakephp.org/class/auth+component)
and AclComponent (http://api.cakephp.org/class/acl+component) .

What you will need

1. A running web server. We're going to assume you're using Apache, though the
instructions for using other servers should be very similar. We might have to play a little
with the server configuration, but most folks can get Cake up and running without any
configuration at all.

2. A database server. We're going to be using mySQL in this tutorial. You'll need to know
enough about SQL in order to create a database: Cake will be taking the reins from
there.

3. Basic PHP knowledge. The more object�oriented programming you've done, the better:
but fear not if you're a procedural fan.

10.2.1 Preparing our Application

First, let's get a copy of fresh Cake code.

To get a fresh download, visit the CakePHP project at Cakeforge: http://cakeforge.org/
projects/cakephp/ and download the stable release. For this tutorial you need 1.2.x.x

You can also checkout/export a fresh copy of our trunk code at: https://svn.cakephp.org/repo/
trunk/cake/1.2.x.x/

Once you've got a fresh copy of cake setup your database.php config file, and change the value
of Security.salt in your app/config/core.php. From there we will build a simple database
schema to build our application on. Execute the following SQL statements into your database.

CREATE TABLE users (
 id INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,

username VARCHAR(255) NOT NULL UNIQUE,
 password CHAR(40) NOT NULL,
 group_id INT(11) NOT NULL,
 created DATETIME,
 modified DATETIME
);

CREATE TABLE groups (
 id INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(100) NOT NULL,
 created DATETIME,
 modified DATETIME
);

CREATE TABLE posts (
 id INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 user_id INT(11) NOT NULL,
 title VARCHAR(255) NOT NULL,
 body TEXT,
 created DATETIME,
 modified DATETIME
);

CREATE TABLE widgets (
 id INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(100) NOT NULL,
 part_no VARCHAR(12),
 quantity INT(11)
);

These are the tables we will be using to build the rest of our application. Once we have the table
structure in the database we can start cooking. Use cake bake (http://book.cakephp.org/
view/113/Code+Generation+with+Bake) to quickly create your models, controllers, and
views.

To use cake bake, call "cake bake all" and this will list the 4 tables you inserted into
mySQL. Select "1 (Group).", and follow the prompts. Repeat for the other 3 tables, and this will
have generated the 4 controllers, models and your views for you.

Avoid using Scaffold here. The generation of the ACOs will be seriously affected if you bake the
controllers with the Scaffold feature.

While baking the Models cake will automagically detect the associations between your Models
(or relations between your tables). Let cake supply the correct hasMany and belongsTo

1. function login() {
2. //Auth Magic
3. }
4.
5. function logout() {
6. //Leave empty for now.
7. }

1. $session4>flash('auth');
2. echo $form4>create('User', array('action' => 'login'));
3. echo $form4>inputs(array(
4. 'legend' => __('Login', true),
5. 'username',
6. 'password'
7.));
8. echo $form4>end('Login');

associations. If you are prompted to pick hasOne or hasMany, generally speaking you'll need a
hasMany (only) relationships for this tutorial.

Leave out admin routing for now, this is a complicated enough subject without them. Also be
sure not to add either the Acl or Auth Components to any of your controllers as you are baking
them. We'll be doing that soon enough. You should now have models, controllers, and baked
views for your users, groups, posts and widgets.

10.2.2 Preparing to Add Auth

We now have a functioning CRUD application. Bake should have setup all the relations we
need, if not add them in now. There are a few other pieces that need to be added before we can
add the Auth and Acl components. First add a login and logout action to your
UsersController.

Then create the following view file for login at app/views/users/login.ctp:

We don't need to worry about adding anything to hash passwords, as AuthComponent will do
this for us automatically when creating/editing users, and when they login, once configured
properly. Furthermore, if you hash incoming passwords manually AuthComponent will not
be able to log you in at all. As it will hash them again, and they will not match.

Next we need to make some modifications to AppController. If you don't have /app/app_
controller.php, create it. Note that this goes in /app/, not /app/controllers/. Since
we want our entire site controlled with Auth and Acl, we will set them up in AppController.

1. <?php
2. class AppController extends Controller {
3. var $components = array('Acl', 'Auth');
4. function beforeFilter() {
5. //Configure AuthComponent
6. $this4>Auth4>authorize = 'actions';
7. $this4>Auth4>loginAction = array('controller' => 'users',
'action' => 'login');
8. $this4>Auth4>logoutRedirect = array('controller' => 'users',
'action' => 'login');
9. $this4>Auth4>loginRedirect = array('controller' => 'posts',
'action' => 'add');
10. }
11. }
12. ?>

1. function beforeFilter() {
2. parent::beforeFilter();
3. $this4>Auth4>allowedActions = array('*');
4. }

Before we set up the ACL at all we will need to add some users and groups. With
AuthComponent in use we will not be able to access any of our actions, as we are not logged
in. We will now add some exceptions so AuthComponent will allow us to create some groups
and users. In both your GroupsController and your UsersController Add the
following.

These statements tell AuthComponent to allow public access to all actions. This is only
temporary and will be removed once we get a few users and groups into our database. Don't add
any users or groups just yet though.

10.2.3 Initialize the Db Acl tables

Before we create any users or groups we will want to connect them to the Acl. However, we do
not at this time have any Acl tables and if you try to view any pages right now, you will get a
missing table error ("Error: Database table acos for model Aco was not found."). To remove
these errors we need to run a schema file. In a shell run the following:

 cake schema run create DbAcl

.

This schema will prompt you to drop and create the tables. Say yes to dropping and creating the
tables.

If you don't have shell access, or are having trouble using the console, you can run the sql file
found in /path/to/app/config/sql/db_acl.sql.

With the controllers setup for data entry, and the Acl tables initialized we are ready to go right?
Not entirely, we still have a bit of work to do in the user and groupmodels. Namely, making
them auto�magically attach to the Acl.

10.2.4 Acts As a Requester

For Auth and Acl to work properly we need to associate our users and groups to rows in the Acl
tables. In order to do this we will use the AclBehavior. The AclBehavior allows for the

1. var $name = 'User';
2. var $belongsTo = array('Group');
3. var $actsAs = array('Acl' => 'requester');
4.
5. function parentNode() {
6. if (!$this4>id && empty($this4>data)) {
7. return null;
8. }
9. $data = $this4>data;
10. if (empty($this4>data)) {
11. $data = $this4>read();
12. }
13. if (!$data['User']['group_id']) {
14. return null;
15. } else {
16. return array('Group' => array('id' => $data['User']['group_id'])
);
17. }
18. }

1. var $actsAs = array('Acl' => array('requester'));
2.
3. function parentNode() {
4. return null;
5. }

automagic connection of models with the Acl tables. Its use requires an implementation of
parentNode() on your model. In our Usermodel we will add the following.

Then in our GroupModel Add the following:

What this does, is tie the Group and Usermodels to the Acl, and tell CakePHP that every�time
youmake a User or Group you want an entry on the aros table as well. This makes Acl
management a piece of cake as your AROs become transparently tied to your users and
groups tables. So anytime you create or delete a user/group the Aro table is updated.

Our controllers andmodels are now prepped for adding some initial data, and our Group and
Usermodels are bound to the Acl table. So add some groups and users using the baked forms.
I made the following groups:

administrators
managers
users

I also created a user in each group so I had a user of each different access group to test with
later. Write everything down or use easy passwords so you don't forget. If you do a SELECT *
FROM aros; from a mysql prompt you should get something like the following:

+4444+44444444444+4444444+4444444444444+4444444+444444+444444+
| id | parent_id | model | foreign_key | alias | lft | rght |
+4444+44444444444+4444444+4444444444444+4444444+444444+444444+
1	NULL	Group	1	NULL	1	4
2	NULL	Group	2	NULL	5	8
3	NULL	Group	3	NULL	9	12
4	1	User	1	NULL	2	3
5	2	User	2	NULL	6	7
6	3	User	3	NULL	10	11

1. // Check if their permission group is changing
2. $oldgroupid = $this4>User4>field('group_id');
3. if ($oldgroupid !== $this4>data['User']['group_id']) {
4. $aro =& $this4>Acl4>Aro;
5. $user = $aro4>findByForeignKeyAndModel($this4>data['User']['id'],
'User');
6. $group = $aro4>findByForeignKeyAndModel($this4>data['User']['group_
id'], 'Group');
7.
8. // Save to ARO table
9. $aro4>id = $user['Aro']['id'];
10. $aro4>save(array('parent_id' => $group['Aro']['id']));
11. }

1. /**
2. * After save callback
3. *
4. * Update the aro for the user.
5. *
6. * @access public
7. * @return void
8. */
9. function afterSave($created) {
10. if (!$created) {
11. $parent = $this4>parentNode();
12. $parent = $this4>node($parent);
13. $node = $this4>node();
14. $aro = $node[0];
15. $aro['Aro']['parent_id'] = $parent[0]['Aro']['id'];
16. $this4>Aro4>save($aro);
17. }
18. }

+4444+44444444444+4444444+4444444444444+4444444+444444+444444+
6 rows in set (0.00 sec)

This shows us that we have 3 groups and 3 users. The users are nested inside the groups,
which means we can set permissions on a per�group or per�user basis.

When modifying a user, youmust manually update the ARO. This code should be executed
wherever you're updating the user information:

An alternative to the above Aro update after group_id is changed, is to add the below to your
User model. Then you don't have to worry about duplicate code.

10.2.5 Creating ACOs

Now that we have our users and groups (aros), we can begin inputting our existing controllers
into the Acl and setting permissions for our groups and users, as well as enabling login /
logout.

Our ARO are automatically creating themselves when new users and groups are created. What
about a way to auto�generate ACOs from our controllers and their actions? Well unfortunately
there is no magic way in CakePHP's core to accomplish this. The core classes offer a few ways
to manually create ACO's though. You can create ACO objects from the Acl shell or You can use
the AclComponent. Creating Acos from the shell looks like:

1. $this4>Acl4>Aco4>create(array('parent_id' => null, 'alias' =>
'controllers'));
2. $this4>Acl4>Aco4>save();

1. $this4>Auth4>actionPath = 'controllers/';

cake acl create aco root controllers

While using the AclComponent would look like:

Both of these examples would create our 'root' or top level ACO which is going to be called
'controllers'. The purpose of this root node is to make it easy to allow/deny access on a global
application scope, and allow the use of the Acl for purposes not related to controllers/actions
such as checking model record permissions. As we will be using a global root ACO we need to
make a small modification to our AuthComponent configuration. AuthComponent needs to
know about the existence of this root node, so that when making ACL checks it can use the
correct node path when looking up controllers/actions. In AppController add the following
to the beforeFilter:

10.2.6 An Automated tool for creating ACOs

As mentioned before, there is no pre�built way to input all of our controllers and actions into
the Acl. However, we all hate doing repetitive things like typing in what could be hundreds of
actions in a large application. I've whipped up an automated function to build my Aco table.
This function will look at every controller in your application. It will add any non�private, non
Controllermethods to the Acl table, nicely nested underneath the owning controller. You
can add and run this in your AppController or any controller for that matter, just be sure to
remove it before putting your application into production.

1. /**
2. * Rebuild the Acl based on the current controllers in the application
3. *
4. * @return void
5. */
6. function buildAcl() {
7. $log = array();
8.
9. $aco =& $this4>Acl4>Aco;
10. $root = $aco4>node('controllers');
11. if (!$root) {
12. $aco4>create(array('parent_id' => null, 'model' => null,
'alias' => 'controllers'));
13. $root = $aco4>save();
14. $root['Aco']['id'] = $aco4>id;
15. $log[] = 'Created Aco node for controllers';
16. } else {
17. $root = $root[0];
18. }
19.
20. App::import('Core', 'File');
21. $Controllers = Configure::listObjects('controller');
22. $appIndex = array_search('App', $Controllers);
23. if ($appIndex !== false) {
24. unset($Controllers[$appIndex]);
25. }
26. $baseMethods = get_class_methods('Controller');
27. $baseMethods[] = 'buildAcl';
28.
29. // look at each controller in app/controllers
30. foreach ($Controllers as $ctrlName) {
31. App::import('Controller', $ctrlName);
32. $ctrlclass = $ctrlName . 'Controller';
33. $methods = get_class_methods($ctrlclass);
34.
35. // find / make controller node
36. $controllerNode = $aco4>node('controllers/' . $ctrlName);
37. if (!$controllerNode) {
38. $aco4>create(array('parent_id' => $root['Aco']['id'],
'model' => null, 'alias' => $ctrlName));
39. $controllerNode = $aco4>save();
40. $controllerNode['Aco']['id'] = $aco4>id;
41. $log[] = 'Created Aco node for ' . $ctrlName;
42. } else {
43. $controllerNode = $controllerNode[0];
44. }
45.
46. // clean the methods. to remove those in Controller and
private actions.
47. foreach ($methods as $k => $method) {
48. if (strpos($method, '_', 0) === 0) {
49. unset($methods[$k]);
50. continue;
51. }
52. if (in_array($method, $baseMethods)) {
53. unset($methods[$k]);
54. continue;
55. }
56. $methodNode = $aco4>node('controllers/' . $ctrlName .

'/' . $method);
57. if (!$methodNode) {
58. $aco4>create(array('parent_id' => $controllerNode
['Aco']['id'], 'model' => null, 'alias' => $method));
59. $methodNode = $aco4>save();
60. $log[] = 'Created Aco node for ' . $method;
61. }
62. }
63. }
64. debug($log);
65. }

Now run the action in your browser, eg. http://localhost/groups/buildacl, This
will build your ACO table.

Youmight want to keep this function around as it will add new ACO's for all of the controllers
& actions that are in your application any time you run it. It does not remove nodes for actions
that no longer exist though. Now that all the heavy lifting is done, we need to set up some
permissions, and remove the code that disabled AuthComponent earlier.

Now, once you get this working, youmay notice that you have trouble accessing any plugins
that youmay be using. The trick to automating the controller ACOs for plugins, is that the
App::import needs to follow the plugin naming convention of
PluginName.PluginControllerName.

So what we need is a function that will give us a list of plugin controller names, and import
them in the same way we did in the code above for the regular controllers. The function below
will do just that:

1. /**
2. * Get the names of the plugin controllers
3. *
4. * This function will get an array of the plugin controller names, and
5. * also makes sure the controllers are available for us to get the
6. * method names by doing an App::import for each plugin controller.
7. *
8. * @return array List of plugin names
9. */
10. function _getPluginControllerNames(){
11. App::import('Core', 'File', 'Folder');
12. $paths = Configure::getInstance();
13. $folder =& new Folder();
14. // change directory to the plugins
15. $folder4>cd(APP . 'plugins');
16. // get a list of the files that have a file name that ends with
controller.php
17. $files = $folder4>findRecursive('.*_controller\.php');
18. // Get the list of plugins
19. $Plugins = Configure::listObjects('plugin');
20.
21. // loop through the controllers we found in the plugins
directory
22. foreach ($files as $f => $fileName) {
23. // get the base file name
24. $file = basename($fileName);
25. // get the controller name
26. $file = Inflector::camelize(substr($file, 0, strlen($file)
4 strlen('_controller.php')));
27.
28. // loop through the plugins
29. foreach ($Plugins as $pluginName) {
30. if (preg_match('/^' . $pluginName . '/', $file)){
31. // first, get rid of the App controller for the
plugin
32. // we do this because the app controller is never
called directly
33. if (preg_match('/^' . $pluginName . 'App/', $file))
{
34. unset($files[$f]);
35. } else {
36. if (!App::import('Controller', $pluginName .
'.' . $file)) {
37. debug('Error importing ' . $file . ' for
plugin ' . $pluginName);
38. }
39. // now prepend the Plugin name
40. // this is required to allow us to fetch the
method names
41. $files[$f] = $file;
42. }
43. break;
44. }
45. }
46. }
47. return $files;
48. }

1. $Plugins = $this4>_getPluginControllerNames();
2. $Controllers = array_merge($Controllers, $Plugins);

1. $this4>Acl4>allow($aroAlias, $acoAlias);

1. function initDB() {
2. $group =& $this4>User4>Group;
3. //Allow admins to everything
4. $group4>id = 1;
5. $this4>Acl4>allow($group, 'controllers');
6.
7. //allow managers to posts and widgets
8. $group4>id = 2;
9. $this4>Acl4>deny($group, 'controllers');
10. $this4>Acl4>allow($group, 'controllers/Posts');
11. $this4>Acl4>allow($group, 'controllers/Widgets');
12.
13. //allow users to only add and edit on posts and widgets
14. $group4>id = 3;
15. $this4>Acl4>deny($group, 'controllers');
16. $this4>Acl4>allow($group, 'controllers/Posts/add');
17. $this4>Acl4>allow($group, 'controllers/Posts/edit');
18. $this4>Acl4>allow($group, 'controllers/Widgets/add');
19. $this4>Acl4>allow($group, 'controllers/Widgets/edit');
20. }

You can then either modify the original code to include the plugin controllers by merging them
with the list you got (place this just before the first foreach loop in the buildAcl function):

10.2.7 Setting up permissions

Creating permissions much like creating ACO's has no magic solution, nor will I be providing
one. To allow ARO's access to ACO's from the shell interface use the AclShell. For more
information on how to use it consult the aclShell help which can be accesed by running:

cake acl help

* needs to be quoted ('*')

To allow with the AclComponent do the following:

We are going to add in a few allow/deny statements now. Add the following to a temporary
function in your UsersController and visit the address in your browser to run them. If you
do a SELECT * FROM aros_acos you should see a whole pile of 1's and 0's. Once you've
confirmed your permissions are set remove the function.

We now have set up some basic access rules. We've allowed administrators to everything.
Managers can access everything in posts and widgets. While users can only access add and
edit in posts & widgets.

We had to get a reference of a Groupmodel andmodify its id to be able to specify the ARO we
wanted, this is due to how AclBehavior works. AclBehavior does not set the alias field in
the aros table so we must use an object reference or an array to reference the ARO we want.

Youmay have noticed that I deliberately left out index and view frommy Acl permissions. We
are going to make view and index public actions in PostsController and
WidgetsController. This allows non�authorized users to view these pages, making them
public pages. However, at any time you can remove these actions from

1. function beforeFilter() {
2. parent::beforeFilter();
3. $this4>Auth4>allowedActions = array('index', 'view');
4. }

1. $this4>Auth4>allowedActions = array('display');

1. <h2>Login</h2>
2. <?php
3. echo $form4>create('User', array('url' => array('controller' => 'users',
'action' =>'login')));
4. echo $form4>input('User.username');
5. echo $form4>input('User.password');
6. echo $form4>end('Login');
7. ?>

1. $session4>flash('auth');

1. $this4>Session4>setFlash('Good4Bye');
2. $this4>redirect($this4>Auth4>logout());

AuthComponent::allowedActions and the permissions for view and edit will revert to
those in the Acl.

Now we want to take out the references to Auth4>allowedActions in your users and groups
controllers. Then add the following to your posts and widgets controllers:

This removes the 'off switches' we put in earlier on the users and groups controllers, and gives
public access on the index and view actions in posts and widgets controllers. In
AppController::beforeFilter() add the following:

This makes the 'display' action public. This will keep our PagesController::display() public.
This is important as often the default routing has this action as the home page for you
application.

10.2.8 Logging in

Our application is now under access control, and any attempt to view non�public pages will
redirect you to the login page. However, we will need to create a login view before anyone can
login. Add the following to app/views/users/login.ctp if you haven't done so already.

Youmay also want to add a flash() for Auth messages to your layout. Copy the default core
layout � found at cake/libs/view/layouts/default.ctp � to your app layouts folder if
you haven't done so already. In app/views/layouts/default.ctp add

You should now be able to login and everything should work auto�magically. When access is
denied Auth messages will be displayed if you added the $session4>flash('auth')

10.2.9 Logout

Now onto the logout. Earlier we left this function blank, now is the time to fill it. In
UsersController::logout() add the following:

This sets a Session flash message and logs out the User using Auth's logout method. Auth's
logout method basically deletes the Auth Session Key and returns a url that can be used in a
redirect. If there is other session data that needs to be deleted as well add that code here.

10.2.10 All done

You should now have an application controlled by Auth and Acl. Users permissions are set at
the group level, but you can set them by user at the same time. You can also set permissions on
a global and per�controller and per�action basis. Furthermore, you have a reusable block of
code to easily expand your ACO table as your app grows.

1. Configure::write('debug', 2);

1. App::import('vendor', 'aUniqueIdentifier', array('file' =>'path/relative/
to/vendor/file.php'));

11 Appendices

11.1 Migrating from CakePHP 1.1 to 1.2

A number of changes have been made to the organization of the CakePHP framework. This
guide is intended to highlight a number of the key areas that will need to be addressed when
porting your application from version 1.1 to 1.2

11.1.1 Configure

In 1.1, many of the configuration options were defined as PHP constants within /app/
core.php. In 1.2, configuration changes are written to a Configure object.

11.1.2 HTML Helper to Form Helper

The form�specific methods from the HTML helper have now been moved to the Form helper
(http://book.cakephp.org/view/182/forms) . The Form helper has expanded quite a bit to
automate a number of form handling tasks.

11.1.3 Loading Files

In 1.1, there were functions such as uses, vendor, and the load* functions like
loadModel. These have been replaced with App::import.

To use vendor libraries/files which do not follow the cake naming convention or are nested in
subdirectories in vendors use

Returns true if successful

11.1.4 Model::generateList()

The generateList()method of has been changed to find('list'). You can simplify
your conversion by placing the following in /app/app_model.php.

1. function getlist ($cond=null,$order=null,$limit=null,$key=null,$
val=null) {
2. return $this4>find("list",array(
3. 'conditions' => $cond,
4. 'order' => $order,
5. 'limit' => $limit,
6. 'fields' => array(str_replace('{n}.','',$key), str_replace('{n}
.','',$val))
7.));
8. }

11.1.5 Possible Migration Approach

Here's a suggestion on how to take a 1.1 app andmake it 1.2 ready:

1. Rename the root directory to something else (e.g. cakeRoot �> cakeRoot~)
2. Extract 1.2 to where you want your app to be (e.g. into the cakeRoot folder)
3. Copy all the models, views, and controllers from cakeRoot~ to cakeRoot
4. Manually apply changes to the config folder.
5. Browse around with debug enabled � read and address any deprectated/debug messages

you see.

Youmay be surprised to see how simple it is.

« 1.2 Collection (http://book.cakephp.org/view/2/x1+2+Collection) | The Cookbook
» (http://book.cakephp.org/view/1/The+Cookbook)

(http://www.cakephp.org/) (http://
creativecommons.org/licenses/by+nc+nd/3.0/)

© Cake Software Foundation, Inc. (http://cakefoundation.org/)

